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Abstract This article concerns properties of mixed �-adic complexes on varieties over finite
fields, related to the action of the Frobenius automorphism. We establish a fiberwise cri-
terion for the semisimplicity and Frobenius semisimplicity of the direct image complex
under a proper morphism of varieties over a finite field. We conjecture that the direct
image of the intersection complex on the domain is always semisimple and Frobenius
semisimple; this conjecture would imply that a strong form of the decomposition theorem
of Beilinson–Bernstein–Deligne–Gabber is valid over finite fields. We prove our conjecture
for (generalized) convolution morphisms associated with partial affine flag varieties for split
connected reductive groups over finite fields. As a crucial tool, we develop a new schematic
theory of big cells for loop groups. With suitable reformulations, the main results are valid
over any algebraically closed ground field.
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1 Introduction and terminology

1.1 Introduction

Let k be a finite field with a fixed algebraic closure k, let f : X → Y be a proper k-
morphism of k-varieties, and let P be a mixed and simple, hence pure, perverse sheaf on X ;
we denote the situation after passage to k by f : X → Y , P . The decomposition theorem
[3] holds over k, i.e., the direct image complex R f ∗P on Y splits as a finite direct sum of
shifted intersection cohomology complexes ICZ ′(L ′) associated with pairs (Z ′, L ′), where,
after having passed to a finite extension k′ of k if necessary, Z ′ is a geometrically integral
subvariety of Y ′ = Y ⊗k k′, and L ′ is a pure and simple sheaf defined on a suitable Zariski-
dense smooth open subvariety of Z ′. We abbreviate the above as follows: after passage to k,
the complex R f ∗P on Y is semisimple.

It is not known whether R f∗P is already semisimple over k, i.e.,whether R f∗P splits into
a finite direct sum of shifted terms of the form ICZ (L)with Z being k-integral and L pure and
simple. As pointed out in [10, Prop. 2.1], this is true if we only ask that L is indecomposable,
rather than simple; the only obstruction to the simplicity of an indecomposable L is the a
priori possible presence of Jordan-type sheaves; see Fact 5.1.3.

A different, yet intimately related question is: is the action of Frobenius on the stalks of
the direct image sheaves Ri f∗P semisimple? In this case, we say that the complex R f∗P on
Y is Frobenius semisimple.

General considerations related to the Tate conjecture over finite fields lead us to conjec-
ture (see Conjecture 5.4.1) that the direct image complex R f∗ICX on Y is semisimple and
Frobenius semisimple, where ICX is the intersection complex of X .1 Note that this is not
known even for f = IdX . Moreover, a proof of our conjecture would imply the semisim-
plicity of the action of Frobenius on the cohomology of a smooth projective variety, which
is also unknown in general. (It is known in some important special cases: Weil’s proof of the
Riemann Hypothesis for abelian varieties implies Frobenius semisimplicity for their coho-
mology groups, cf. [36, p. 203]; Deligne proved the corresponding result for K3 surfaces,
using a reduction to abelian varieties, cf. [13, 6.6].)

In this paper, we establish the validity of Conjecture 5.4.1 in the case of Lusztig-type
convolution morphisms associated with twisted products of Schubert varieties in partial
(affine) flag varieties. The validity of the conjecture in the case of proper toric morphisms of
toric varieties has already been established in [10].

Along the way, we prove other results, some of which are valid for any proper morphism,
and some of which are specific to the context of twisted product varieties.

Let us summarize the main results of this paper.
Theorem 2.1.1: the direct image R f∗ICX is semisimple and Frobenius semisimple if

and only if Frobenius acts semisimply on the cohomology groups of all closed fibers with
coefficients in ICX .

Theorem 2.1.2: the intersection complex IC f (X) is a direct summand of R f∗ICX .
Corollary 2.2.3: the convolution complex ICXP (w1) ∗ · · · ∗ ICXP (wr ) associated with a

twisted product variety is semisimple and Frobenius semisimple. In fact, viewing this result as
the (Frobenius) semisimplicity of a direct image complex of a convolutionmorphism, it holds
for a larger class of convolution-type morphism, which we introduce and name generalized
convolution morphisms; see Theorem 2.2.2. Note that we prove something stronger than

1 We have normalized the intersection complex ICX of an integral variety X so that if X is smooth, then
ICX ∼= Q�X ; this is not a perverse sheaf; the perverse sheaf counterpart is ICX = ICX [dim X ].
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122 M. A. de Cataldo et al.

semisimplicity and Frobenius semisimplicity, namely evenness (no odd cohomology) and
Tateness (the lisse and pure coefficients are constant, up to a precise Tate-twist).

The proof of Theorem 2.2.2, which deals with the direct image of the intersection complex
by a generalized convolutionmorphism, is intertwinedwith the proof of analogous statements
concerning the intersection cohomology groups of twisted product varieties; see Theorem
2.2.1.

One of the key ingredients is the semisimplicity of the action of Frobenius on the coho-
mology of the fibers. This is achieved in two very distinct ways. The former is by means of
affine paving results for the fibers of certain convolution morphisms; see Theorem 2.5.2. The
latter is by means of the surjectivity for fibers Theorem 2.4.1.

The proof of the surjectivity Theorem 2.4.1, which is a geometric statement, is arithmetic
in nature (it uses the yoga of weights) and it is inspired by the Kazhdan–Lusztig observation
linking contracting Gm-actions and purity. This idea has been exploited also in the toric case
in [10]. The necessary preparation, i.e., the local product structure Lemma 6.1.3, relies on a
new schematic theory of “big cells” adapted to partial affine flag varieties, which generalizes
to partial affine flag varieties results of Beauville-Laszlo [2] and Faltings [15] for affine
Grassmannians and affine flag varieties, respectively. In particular, we define the “negative”
parahoric loop group L−−Pf (Definition 3.6.1) and prove

Theorem 2.3.1: The map L−−Pf × L+Pf → LG is an open immersion.
Let us remark that the big cell in a Kac–Moody full flag variety has been constructed

by completely different methods (for example, see the remarks after [34, Lem.8]). It is not
clear at all that the Kac–Moody construction could be used to define big cells in our context.
Indeed, we are working with the partial affine flag varieties LG/L+Pf , and LG is not a
Kac–Moody group unless G is a simply-connected semisimple group. Of course, if Gsc is
the simply-connected cover of the derived group Gder, then LG is closely related to the Kac–
Moody group LGsc, and one might expect one could exploit this relationship to construct
the big cells for LG. In fact it is even true that the Kac–Moody full flag variety constructed
in [34] for LGsc coincides as an ind-k-scheme with the object LGsc/L+Pa we consider
(although this is not obvious; see [38, Section 9.h]). However, we found no way to reduce the
construction of the schematic big cell for LG to that for LGsc: just one issue is that the notion
of parahoric subgroup in LG is much more subtle than in LGsc, where there are no issues of
disconnectedness of Bruhat-Tits group schemes (such issues are the subject of [24]). In this
article we propose a self-contained construction of the schematic big cell in LG, using the
key group ind-scheme L−−Pf . Most of the geometric results about convolution morphisms
hinge on properties of L−−Pf (such as the Iwahori-type decompositions Sect. 3.7). These
foundations for loop groups form a substantial part of this article. They made possible our
rather efficient affine paving, contraction and surjectivity techniques. We also expect these
foundations to be useful apart from Frobenius semisimplicity questions.

Finally, we mention:
Theorem 2.2.7: “explicit” form of the decomposition theorem for generalized convolution

morphisms.
Some special and important cases of our Corollary 2.2.3 have already been proved in

works by Beilinson–Ginzburg–Soergel [4], Bezrukavnikov–Yun [5], and Achar–Riche [1].
The relation to these papers is discussed in Remark 2.2.5 and in Sect. 8.

The paper is organized as follows. In Sects. 1.2 and 1.3 we introduce (a minimal amount
of) terminology and notation which will be used to state the main results of this paper in Sect.
2. We review the background and establish preliminary results on: affine groups and affine
partial flag varieties (Sect. 3), twisted product varieties (Sect. 4), geometric P-Demazure
product (Sect. 4.2) and its comparison with the standard Demazure product defined using the
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Frobenius semisimplicity for convolution morphisms 123

0-Hecke algebra (Sect. 4.3), connectivity of fibers of convolution morphisms (Sect. 4.4.5),
and generalized convolution morphisms (Sect. 4.5). We develop our theory of big cells in
partial affine flag varieties in Sect. 3; in particular some new Iwahori-type decompositions
are presented in Sect. 3.7. The proofs of our main results are then presented in Sects. 5, 6,
and 7. In Sect. 5, we prove two results which hold for any proper morphism, namely the
(Frobenius) semisimplicity of the proper direct image criterion (Theorem 2.1.1) and that the
intersection complex splits off (Theorem 2.1.2). In Sect. 6, we prove our surjectivity for fibers
criterion (Theorem 2.4.1) and apply it to prove Theorems 2.2.1 and 2.2.2. In Sect. 7, we prove
the affine paving of Demazure-type maps (Theorem 2.5.2), and use it to give a second proof
of Corollary 2.2.3 which asserts, among other things, that the convolution product is even
and Tate. In Sect. 8.1, we make brief remarks about the Kac–Moody setting and explain the
relation of our results with other works in the published literature. In Sect. 8.2, we discuss
how to view our results over other fields k.

1.2 Frobenius semisimplicity and the notion of good

Unless stated otherwise, we work with separated schemes of finite type over a finite field k
(varieties, for short) and with a fixed algebraic closure k ⊆ k. We fix a prime number � �=
char k, and we work with the associated “bounded-derived-constructible-mixed” categories
with the middle perversity t-structure Db

m(−, Q�) ⊆ Db
c (−, Q�) in [3], whose objects we

call complexes. Complexes, maps, etc. defined over k, can be pulled-back to k, in which
case they are branded with a bar over them, e.g. a map of k-varieties f : X → Y pulls-
back to f : X → Y , and a complex F ∈ Db

m(X, Q�) on X pulls-back to the complex
F on X . The stalks H∗(F)x of a complex F ∈ Db

m(x, Q�) at a point x ∈ X (k) are finite
dimensional graded Galois Q�-modules endowed with a weight filtration. In particular, so
are the cohomology groups H∗(X ,F). Unless otherwise stated, the direct image functor R f∗
will be denoted simply by f∗.

We are especially interested in: the intersection cohomology groups IH∗(X , Q�) :=
H∗(X , ICX ), where ICX is the intersection complex of X , normalized so that, if X is smooth
and connected, then ICX = Q�X ; the cohomology groups H∗( f −1(y), ICX ), where y is a
closed point in Y .

Let X be a k-variety. We consider the following properties of complexesF ∈ Db
m(X, Q�):

– semisimplicity: F is isomorphic to the direct sum of shifted simple perverse sheaves
(necessarily supported on integral closed subvarieties of X );

– Frobenius semisimplicity: the graded Galois modules H∗(F)x are semisimple for every
x ∈ X (k);

– evenness: the H∗(F)x are even, i.e., trivial in odd cohomological degrees
– purity with weightw:H∗(F)x has weights≤ w+ i in degree i andH∗(F∨)x has weights

≤ −w + i in degree i (F∨ the Verdier dual);
– very pure with weight w [29, Section 4]: F is pure with weight w and the mixed graded

Galois module H∗(F)x is pure with weight w, i.e., it has weight w + i in degree i .2

– Tateness: eachHi (F)x is isomorphic to a direct sum of Tate modulesQ�(−k) of possibly
varying weights 2k.

We also have the notions of Frobenius semisimple/even/pure/Tate finite dimensional Galois
gradedmodules. According to our definition, a Tate Galois module is automatically semisim-
ple.

2 Equivalently, F is pure of weight w and each Hi (F) is pointwise pure of weight w + i in the sense of [3,
p. 126].
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124 M. A. de Cataldo et al.

Next, we introduce a piece of terminology that makes some of the statements we prove
less lengthy.

Definition 1.2.1 Wesay thatF ∈ Db
m(X, Q�) is good if it is semisimple, Frobenius semisim-

ple, very pure with weight zero, even and Tate. We say that a graded Galois module is good
if it is Frobenius semisimple, very pure with weight zero, even and Tate.

1.3 Convolution morphisms between twisted product varieties

What follows is a brief summary of the notions surrounding twisted product varieties and
convolution maps that are more thoroughly discussed in Sects. 3, 4 and that are needed to
state some of our main results in Sect. 2.

Let G be a split connected reductive group over the finite field k. Let G � Q ⊃ B ⊂ P
be the associated loop group together with a nested sequence of parahoric subgroups, with
B being the Iwahori associated with a k-rational Borel on G. Let W be the extended affine
Weyl group associated with G and let WP ⊆ W be the finite subgroup associated with P
(see Sect. 3).

The twisted product varieties XP (w•) = XP (w1, . . . wr ) (see Definition 4.1.1), with
wi ∈ WP\W/WP , are closed subvarieties in the product (G/P)r . We denote by w′′

i the
image of wi under the natural surjection WP\W/WP → WQ\W/WQ; see Sect. 3.10,
especially (3.33) and (3.34). Given 1 ≤ r ′ ≤ r and 1 ≤ i1 < · · · < im = r ′, by consideration
of the natural product of projection maps (G/P)r → (G/Q)m onto the ik-th components, in
Sect. 4.5, we introduce the generalized convolutionmaps p : XP (w•) → XQ(w′′

I,•) between
twisted product varieties; they generalize the standard convolution map XB(w1, . . . , wr ) →
XB(w1 ∗ · · · ∗ wr ) (4.5) which is the special case when B = P = Q, r = r ′, m = 1 and
i1 = r.

Here, ∗ is the Demazure product on W (see Sect. 4.3). In this paper, we use an equiva-
lent version of this product operation on WP\W/WP , which we call geometric Demazure
product, and we denote by �P (see 4.2).

We work with the convolution maps for which the wi , which in general correspond to
P-orbit closures in G/P , correspond to Q-orbit closures in G/P. Such w’s are said to be
of Q-type (see Definition 3.10.3). These include the w’s that correspond to those Q-orbit
closures XP (w) that are the full-pre-image of their image XQ(w′′) ⊆ G/Q, which we name
of Q-maximal type. Note that both conditions are automatic when P = Q, so that the case
of classical convolution maps is covered.

Our results hold also in the “finite” (vs. affine) context of partial flag varieties G/P ,
with the same, or simpler, proofs. The choice of the notation G,B, etc., reflects our unified
treatment of the finite and of affine cases; see Sect. 3.9.

2 The main results

2.1 Proper maps over finite fields

The decomposition theorem in [3] states that if f : X → Y is a proper k-morphism and F
is a simple perverse sheaf on X , then f∗F is semisimple. See (cf.Sect. 1.1). It is not known
whether f∗F is semisimple. The issue is whether the indecomposable lisse local systems
appearing in the a-priori weaker decomposition over the finite field are, in fact, already
simple (absence of Frobenius Jordan blocks on the stalks); see Sect. 5.1. Moreover, it is not
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Frobenius semisimplicity for convolution morphisms 125

known whether Frobenius acts semisimply on the stalks of a simple perverse sheaf, not even
in the case of the intersection complex of the affine cone over a smooth projective variety.
In fact, that would imply that Frobenius acts semisimply on the cohomology of smooth
projective varieties.

Let us emphasize that in Theorems 2.1.1 and 2.1.2, we do not need to pass to the algebraic
closure, i.e. the indicated splittings already hold over the finite field. Moreover, in Theorem
2.1.2, we do not assume, as one usually finds in the literature, that the proper map f is
birational, nor generically finite.

Theorem 2.1.1 (Semisimiplicity criterion for direct images) Let f : X → Y be a proper
map of varieties over the finite field k and let F ∈ Db

m(X, Q�) be semisimple. The direct
image complex f∗F ∈ Db

m(Y, Q�) is semisimple and Frobenius semisimple if and only if the

graded Galois modules H∗( f −1(y),F) are Frobenius semisimple for every closed point y
in Y .

A rather different statement, which gives a sufficient condition to guarantee semisimplicity
and Frobenius semisimplicity, can be found in [1, Prop. 9.15].

Theorem 2.1.2 (The intersection complex splits off) Let f : X → Y be a proper map of
varieties over the finite field k. The intersection complex IC f (X) is a direct summand of
f∗ICX in Db

m(Y, Q�). In particular, the graded Galois module IH∗( f (X), Q�) is a direct
summand of the graded Galois module IH∗(X , Q�).

Recall our Definition 1.2.1 of a good complex.

Corollary 2.1.3 (Goodness for intersection cohomology) Let f : X → Y be a proper and
surjective map of varieties over the finite field k. If the Galois module IH∗(X , Q�) is pure of
weight zero (resp. with weights ≤ w, resp. with weights ≥ w, resp. Frobenius semisimple,
resp. even, resp. Tate, resp. good) then so is IH∗(Y , Q�).

2.2 Generalized convolution morphisms

Theorem 2.2.1 (Goodness for twisted product varieties)Let X = XP (w•) be a twisted prod-
uct variety. Then IH∗(X , Q�) and ICX are good. In particular, ICX is Frobenius semisimple
and Frobenius acts semisimply on IH∗(X , Q�).

Theorem 2.2.2 (Goodness for generalized convolution morphisms) Consider a generalized
convolution morphism p : Z := XP (w•) → X := XQ(w′′

I,•) with wi ∈ PWP of Q-type.
Then p∗ICZ is good.

Moreover, for every closed point x ∈ X and every open U ⊇ p−1(x), the natural restric-
tion map IH∗(U , Q�) → H∗(p−1(x), ICZ ) is surjective, and the target is good.
In particular, the fibers of p are geometrically connected.

We remind the reader of Remark 4.6.1, which clarifies the relation between a convolution
product of certain perverse sheaves and a convolution morphism, i.e., the former is a complex
that coincides with a direct image by the latter: see (4.19). The following corollary is a special
case of Theorem 2.2.2 and a direct consequence of it.

Corollary 2.2.3 (Goodness for convolution products) The convolution product ICXP (w1) ∗
· · · ∗ ICXP (wr ) = p∗ICXP (w•) is good.

123

Author's personal copy



126 M. A. de Cataldo et al.

Remark 2.2.4 We also give a different proof of Corollary 2.2.3 using the paving Theorem
2.5.2.(2), in Sect. 7.4.

Remark 2.2.5 In the case of Schubert varieties in the finite (i.e. “ordinary”) flag varietyG/B,
the fact that ICXB (w) is good has been proved in [4, Corollary 4.4.3]. The semisimplicity
and Frobenius semisimplicity aspect of Corollary 2.2.3 has been addressed in [1,5], and in
the cases of full (affine) flag varieties, one can also deduce semisimplicity and Frobenius
semisimplicity using their methods. In Sect. 8, we shall make a few more remarks about the
relation of our results with theirs.

Remark 2.2.6 Recall that a good graded Galois module is, in particular, Frobenius semi-
simple. Theorem 2.2.2 gives a proof, in our set-up, of the general Conjecture 5.4.1. For a
proof of this conjecture in the context of proper toric maps, see [10].

Given Theorem 2.2.2, the proof of the following theorem concerning generalized convo-
lution morphisms proceeds almost exactly as in the case [10, Theorem 1.4.1] of proper toric
maps over finite fields and, as such, it is omitted; it is not used in the remainder of the paper.
The only issue that is not identical with respect to the proof in [10], is the one of the geometric
integrality of the varieties O below; in the case where r ′ = 1 (see Sect. 1.3), these varieties
are Q-orbit closures, hence they are geometrically integral (e.g. by Proposition 3.10.2); the
case where r ′ > 1 follows from the r ′ = 1 case, coupled with the local product structure
Proposition 4.5.2.

Following the statement is a short discussion relating the theorem to the positivity of
certain polynomials.

Theorem 2.2.7 (Q-equivariant decomposition theorem for generalized convolution mor-
phisms) Let p : Z := XP (w•) → X := XQ(w′′

I,•) be a generalized convolution morphism

with wi ∈ PWP of Q-type. There is an isomorphism in Db
m(X, Q�) of good complexes

p∗ICZ ∼=
⊕

O
ICO ⊗ Mp;O,

Mp;O =
dim Z−dimO⊕

j=0

Q�
mp;O,2 j

(− j)[−2 j],

whereO is a finite collection of geometrically integralQ-invariant closed subvarieties in X,
the multiplicities m p;O,2 j are subject to the following constraints:

(1) Poincaré-Verdier duality: m p;O,2 j = mp;O,2 dim Z−2 dimO−2 j ;
(2) relative hard Lefschetz: m p;O,2 j ≥ mp;O,2 j−2, for every 2 j ≤ dim Z − dimO.

In what follows, we are going to use freely the notion of incidence algebra of the poset
associated with the B-orbits in G/B as summarized in [11, Section 6]. In particular, (2.1) is
the analogue of [11, Theorem 7.3] in the context of the map p below. The reader is warned
that in [11], the poset of orbits in the toric variety has the order opposite to the one employed
below in G/B, i.e. here we have v ≤ w iff XB(v) ⊆ XB(w). One can also use Hecke algebras
in place of incidence algebras.

Let p : XB(w•) → XB(w) be a convolution morphism (w is the Demazure product of the
wi ’s). For every u ≤ v ≤ w ∈ W , let: Fp;v(q) ∈ Z≥0[q] be the Poincaré polynomial of the

geometric fiber p−1(vB); Puv(q) ∈ Z≥0[q] be the Kazhdan–Lusztig polynomial (which we
view, thanks to theKazhdan–Lusztig theorem [29], as the graded dimension of graded stalk of
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Frobenius semisimplicity for convolution morphisms 127

intersection complex of XB(v) at the geometric point at uB); P̃uv(q) ∈ Z[q] be the function
inverse to the Kazhdan–Lusztig polynomials in the incidence Z[q]-algebra associated with
the poset of B-orbits in G/B, i.e. we have∑u≤x≤v Pux P̃xv = δuv ; Mp;v(q) ∈ Z≥0[q] be the
graded dimension of Mp;v .

Of course, v ≤ w appears non trivially in the decomposition Theorem for p iffMp;v �= 0;
in this case, we say that v is a support of the map p. By virtue of the precise form of the
decomposition Theorem 2.2.7 for p, and by using incidence algebras (or Hecke algebras)
exactly as in [11, Theorem 7.3], one gets the following identities

Fp;v =
∑

v≤x≤w

Pvx Mp;x (inZ≥0[q]), Mp;x =
∑

x≤z≤w

P̃xz Fp;z (inZ[q]), (2.1)

where the first one stems from Theorem 2.2.7, and the second one is obtained by inverting
the first one by means of the identity

∑
u≤x≤v Pux P̃xv = δuv .

The polynomials P̃ satisfy the identity P̃uv = (−1)�(u)+�(v)Quv , where the polynomials
Quv ∈ Z≥0[q] are the inverse Kazhdan–Lusztig polynomials; see [29, Prop. 5.7] and [17,
Thm.3.7]. In particular, it is not a priori clear that the r.h.s. of the second identity in (2.1)
should be a polynomial with non-negative coefficients: here, we see this as a consequence of
the decomposition theorem.

Further, let us specialize to p : XB(s•) → XB(s) being a Demazure map, where s• ∈ Sr

and s is the Demazure product s1 ∗ · · · ∗ sr . The polynomial Fp;v[q] counts the number of
affine cells in each dimension in the fiber of p over the point vB (cfr. Theorem 2.5.2. (1)).
The total number of these, i.e. the Euler number of the fiber, is of course Fp;v(1) and it is
also the cardinality of the set {(t1, . . . , tr ) | ti = si or 1; �i ti = v}.

The identity M = ∑
P̃ F in (2.1) expresses a non-trivial relation between the supports of

the Demazure map p, the topology of its fibers, and the inverse Kazhdan–Lusztig polynomi-
als.

Question 2.2.8 (Supports for Demazure maps) Which Schubert subvarieties XB(v) of a
Schubert variety XB(w) in G/B appear as supports of a given Demazure map? This boils
down to determining when the non-negative Mp;v(1) is in fact positive. This seems to be a
difficult problem—even in the finite case!–, in part because of the presence of the inverse
Kazhdan–Lusztig polynomials.

2.3 The negative parahoric loop group and big cells

In §3 we introduce a “negative” loop group L−−Pf associated to a parahoric loop group
L+Pf , for any facet f of the Bruhat-Tits building for G(k((t))). More precisely, assuming f
is in the closure of an alcove a corresponding to a Borel subgroup B = TU of G, we have
the standard definition L−−Pa := L−−G · Ū , and then we define

L−−Pf :=
⋂

w∈W̃f

wL−−Pa.

Our results on the geometry of twisted products of Schubert varieties rest on the following
theorem:

Theorem 2.3.1 The multiplication map gives an open immersion

L−−Pf × L+Pf −→ LG.
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128 M. A. de Cataldo et al.

This allows us to define the Zariski-open big cell Cf := L−−Pf · xe in the partial affine
flag variety FPf . The proof rests on new Iwahori-type decompositions, most importantly
Proposition 3.7.1.

2.4 A surjectivity criterion

The part of Theorem 2.2.2 concerning fibers is a consequence of the followingmore technical
statement. Recall the Virasoro action via L0 of Gm on G ([15, p. 48]) (defined and named
“dilation” action in Sect. 6.1 and denoted by c).

Theorem 2.4.1 (Surjectivity for fibers criterion) Let X := XBP (w) ⊆ G/P be the closure
of a B-orbit, let g : Z → X be a proper and B-equivariant map of B-varieties. In the partial
affine flag case, we further assume that there is a Gm-action cZ on Z such that cZ commutes
with the T (k)-action, and such that g is equivariant with respect to the action cZ on Z and
with the action c on X.

For every closed point x ∈ X, for every Zariski open subsetU ⊆ Z such that g−1(x) ⊆ U,
the natural restriction map of graded Galois modules

IH∗(U ) → H∗(g−1(x), ICZ ) (2.2)

is surjective and the target is pure of weight zero.
If, in addition, IH∗(Z) is Frobenius semisimple (resp. even, Tate, good), then so is the

target.

Remark 2.4.2 The hypothesis on the existence of the action cZ in Theorem 2.4.1 is not
restrictive in the context of this paper, as it is automatically satisfied in the situations we
meet when proving Theorem 2.2.2. Let us emphasize that it is also automatically satisfied
in the finite case. Similarly, the hypotheses at the end of the statement of Theorem 2.4.1 are
also not too restrictive, since, as it turns out, they are automatically satisfied in the context of
Theorem 2.2.2, by virtue of Theorem 2.2.1.

2.5 Affine paving of fibers of Demazure-type maps

Definition 2.5.1 (Affine paving) A k-variety X is paved by affine spaces if there exists a
sequence of closed subschemes ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn =: Xred such that, for every
1 ≤ i ≤ n, the difference Xi − Xi−1 is the (topologically) disjoint union of finitely many
affine spaces A

ni j .

We refer to Sects. 1.3, 3.9, 3.10 for the notation used in the following result.

Theorem 2.5.2 Given sequences s• ∈ Sr , w• ∈ (WP\W/WP )r , the following can be
paved by affine spaces

(1) The fibers of the convolution map p : XB(s•) → XB(s�), and p−1(YB(v)), ∀v ≤ s�.
(2) The fibers of the convolution map obtained as the composition XB(s••) → XB(s�) →

XP (u�), where, for every 1 ≤ i ≤ r , si• is a reduced word for an element ui ∈ W
which is P-maximal, and s� is the Demazure product of the s•• which, by associativity,
coincides with the one, u�, for the ui .

(3) The twisted product varieties XP (w•).

Remark 2.5.3 In Theorem 2.5.2.(1) it is important that we do not require s1 · · · sr to be a
reduced expression. As we shall show, associated with a convolution map with P = Q, there
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Frobenius semisimplicity for convolution morphisms 129

is a commutative diagram (6.7) of maps of twisted product varieties. Theorem 2.5.2.(2) is a
paving result for the fibers of the morphisms q ′ p′π appearing in that diagram.

Remark 2.5.4 We do not know whether every fiber of a convolution morphism p :
XP (w•) → XP (w�) is paved by affine spaces, even in the context of affine Grassman-
nians (cf. [23, Cor. 1.2 and Question 3.9]). However, it is not difficult to show that, in general,
each fiber can be paved by varieties which are iterated bundles BN → BN−1 → · · · B1 →
B0 = A0 where each Bi+1 → Bi is a locally trivial A1 or A1 − A0 fibration. We shall not
use this result.

3 Loop groups and partial affine flag varieties

In Sects. 3.1–3.5 we review some standard background material; our main references are
[2,15,24,38]. In Sect. 3.6–3.10 we develop new material, including our definition of the
negative parahoric loop group, various Iwahori-type decompositions, and our theory of the
big cell.

3.1 Reductive groups and Borel pairs

Throughout the paper G will denote a split connected reductive group over a finite field k,
and k̄ will denote an algebraic closure of k. Fix once and for all a k-split maximal torus T and
a k-rational Borel subgroup B ⊃ T . Let U be the unipotent radical of B, so that B = TU .
Let B̄ = TŪ be the opposite Borel subgroup; among the Borel subgroups containing T , it
is characterized by the equality T = B ∩ B̄. Let �(G, T ) ⊂ X∗(T ) denote the set of roots
associated to T ⊂ G; write α∨ ∈ X∗(T ) for the coroot corresponding to α ∈ �(G, T ).
Write Uα ⊂ G for the root subgroup corresponding to α ∈ �(G, T ); we say α is positive
(and write α > 0) if Uα ⊂ U ; we have B = T

∏
α>0Uα .

The following remark will be used a few times in the paper.

Remark 3.1.1 We work over any perfect field k. Fix a faithful finite-dimensional represen-
tation of G, i.e., a closed immersion of group k-schemes G ↪→ GLN . Let BN be a k-rational
Borel subgroup of GLN containing B (cf. [42, 15.2.5]), and choose inside BN a k-split
maximal torus TN containing T . Let B̄N be the k-rational Borel subgroup opposite to BN

with respect to TN . Let UN ⊂ BN (resp., ŪN ⊂ B̄N ) be the unipotent radical. Since T
is its own centralizer in G, we have T = G ∩ TN . Also, we clearly have B = G ∩ BN

(cf. [27, §23.1, Cor.A]), and therefore U = G ∩ UN . Note that (G ∩ B̄N )◦ is a Borel sub-
group B ′ containing T , since it is connected and solvable and G/(G ∩ B̄N )◦ is complete. As
T ⊆ B∩B ′ ⊆ G∩BN ∩ B̄N = G∩TN = T , we have T = B∩B ′ and so B ′ = B̄. Hence we
have B̄ = G∩ B̄N and Ū = G∩ŪN aswell. The content of this set-up is that the standard Iwa-
hori loop-group L+Pa (and its “negative” analogues L−−Pa(m), etc. , defined later in §3) in
a loop group LG can be realized by intersecting LG with the corresponding object in LGLN .

3.2 Affine roots, affine Weyl groups, and parahoric group schemes

A convenient reference for the material recalled here is [24].
Let NG(T ) be the normalizer of T in G. Let W = NG(T )/T be the finite Weyl group,

and let W̃ := X∗(T ) � W be the extended affine Weyl group. The groups W and W̃ act by
affine-linear automorphisms on the Euclidean space X∗ = X∗(T )⊗R; in the case of W̃ this
is defined by setting, for every λ ∈ X∗(T ), w ∈ W and x ∈ X∗
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tλw̄(x) := (λ,w)(x) := λ + w̄(x). (3.1)

The set�aff of affine roots consists of the affine-linear functionals onX∗ of the form α+n,
where α ∈ �(G, T ) and n ∈ Z. The affine root hyperplanes are the zero loci Hα+n ⊆ X∗
of the affine roots. The alcoves are the connected components of X∗ − ⋃

α+n Hα+k . The
hyperplanes give the structure of a polysimplicial complex to the Euclidean space X∗, and
the facets are the simplices (thus alcoves are facets).

The action of W̃ = X∗(T ) � W on X∗ induces an action on the set of affine roots, by
w(α + n)(·) := (α + n)(w−1(·)). Let X+∗ ⊂ X∗ be the dominant chamber consisting of
the x ∈ X∗ with α(x) > 0 for all α > 0. Let a be the unique alcove in X+∗ whose closure
contains the origin of X∗.

We say an affine root α + n is positive if either n ≥ 1, or n = 0 and α > 0. Equivalently,
α + n takes positive values on a. We write α + n > 0 in this case. We write α + n < 0 if
−α − n > 0. Let Saff be the set of simple affine roots, namely those positive affine roots of
the form αi (where αi is a simple positive root in �(G, T )), or−α̃ + 1 (where α̃ ∈ �(G, T )

is a highest positive root).
Let sα+n be the affine reflection on X∗ corresponding to the affine root α + n; this is

the map sending x ∈ X∗ to x − (α + n)(x)α∨ = x − α(x)α∨ − nα∨. We have sα+n =
t−nα∨sα ∈ W̃ . We can think of Saff as the set of reflections on X∗ through the walls of a. Let
Q∨ := 〈tβ∨ ∈ W̃ | β ∈ �(G, T )〉, and let Waff := Q∨ � W . Then (Waff , Saff ) is a Coxeter
system, and hence there is a length function � : Waff → Z≥0 and a Bruhat order ≤ on Waff .

The action of W̃ on X∗ permutes the affine hyperplanes, and hence the alcoves in X∗; let
�a ⊂ W̃ denote the stabilizer of a. Then we have a semi-direct product

W̃ = Waff � �a. (3.2)

This gives W̃ the structure of a quasi-Coxeter group: a semi-direct product of a Coxeter group
with an abelian group. We can extend � and ≤ to W̃ : for w1, w2 ∈ Waff and τ1, τ2 ∈ �a, we
set �(w1τ1) = �(w1), and w1τ1 ≤ w2τ2 iff τ1 = τ2 and w1 ≤ w2 in Waff .

Let t be an indeterminate. We now fix, once and for all, a set-theoretic embedding W̃ ↪→
NG(T )(k((t))) as follows: send w̄ ∈ W to any lift in NG(T )(k), chosen arbitrarily; send
λ ∈ X∗(T ) to λ(t−1) ∈ T (k((t))).3 Henceforth, any w ∈ W̃ will be viewed as an element of
G(k((t))) using this convention.

There is an isomorphism

NG(T )(k((t)))/T (k[[t]]) ∼→ W̃ ,

which sends λ(t−1)w̄ to tλw̄. Via this isomorphism, NG(T (k((t))) acts on X∗. The Bruhat-
Tits buildingB(G, k((t))) is a polysimplicial complex containing X∗ as an “apartment”. It is
possible to extend the action of NG(T (k((t))) on X∗ to an action of G(k((t))) onB(G, k((t))).

Let f be a facet in X∗. In [7, 5.2.6], Bruhat and Tits construct the parahoric group scheme
Pf over Spec(k[[t]]). In our present setting, Pf can be characterized as the unique (up to
isomorphism) smooth affine group scheme over Spec(k[[t]])with connected geometric fibers,
with generic fiber isomorphic to Gk((t)), and with Pf (k[[t]]) identified via that isomorphism
with the subgroup of G(k((t))) which fixes f pointwise and is in the kernel of the Kottwitz
homomorphism.

We call Pa “the” Iwahori group scheme. Its k[[t]]-points can also be characterized as the
preimage of B(k) under the reduction map G(k[[t]]) → G(k), t �→ 0. If 0 ⊂ X∗ is the
facet containing the origin, then P0 is a (hyper)special maximal parahoric group scheme

3 The reason for using t−1 instead of t here is to make (3.4) and (3.5) true.
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and its k[[t]]-points can be identified with G(k[[t]]). For any k-algebra R, we can similarly
characterize Pa(R[[t]]) and P0(R[[t]]) (using the Iwahori decomposition in the case of Pa).

Assume from now on that f is contained in the closure of a. Set

W̃f := [NG(T )(k((t))) ∩ Pf (k[[t]])]/T (k[[t]]).
Then W̃f can be identified with the subgroup of Waff which fixes f pointwise. Let Saff,f ⊂
Saff be the simple affine reflections through the walls containing f . Then it is known that
(W̃f , Saff,f ) is a sub-Coxeter system of (Waff , Saff ). Note that W̃f is a finite group.

It is well-known that for any two facets f1, f2 in X∗, the embedding W̃ ↪→ G(k((t)))
induces a bijection (the Bruhat-Tits decomposition)

W̃f1\W̃/W̃f2
∼→ Pf1(k[[t]])\G(k((t)))/Pf2(k[[t]]). (3.3)

3.3 Loop groups, parahoric loop groups, and partial affine flag varieties

A convenient reference for the material recalled in this subsection is [38].
The loop group LG of G is the ind-affine group ind-scheme over k that represents the

functor R �→ G(R((t))) on k-algebras R. The positive loop group L+G is the affine group
scheme over k that represents R �→ G(R[[t]]). The negative loop group L−G is the ind-affine
group ind-scheme over k that represents the functor R �→ G(R[t−1]).

We have the natural inclusion maps L±G → LG and the natural reduction maps L±G →
G (sending t±1 �→ 0). The kernels of the reduction maps are denoted by L++G ⊂ L+G
resp. L−−G ⊂ L−G.

We may also define L+Pf to be the group scheme representing the functor

R �→ Pf (R[[t]]).
This makes sense as R[[t]] is a k[[t]]-algebra. Also, R((t)) = R[[t]][ 1t ], and we define LPf as
the group ind-scheme representing R �→ Pf (R((t))). Since Pf ⊗k[[t]] k((t)) ∼= Gk((t)), we have
LPf ∼= LG.

It is not hard to show that L+Pf is formally smooth, pro-smooth, and integral as a k-
scheme. We omit the proofs.

Definition 3.3.1 We define the partial affine flag variety FPf to be the fpqc-sheaf associated
to the presheaf on the category of k-algebras R

R �−→ LG(R)/L+Pf (R).

It is well-known that FPf is represented by an ind-k-scheme which is ind-projective over k;
see e.g. [38, Thm.1.4]. We denote this ind-scheme also by FPf . Note that FPf is usually not
reduced (see [38, Section 6]). Therefore, from Sect. 3.9 onward, we will always considerFPf
with its reduced structure. The same goes for the Schubert varieties (and the twisted products
of Schubert varieties) which are defined in what follows.

3.4 Schubert varieties and closure relations

Fix facets f ′ and f in the closure of a. Given v ∈ W̃ (viewed in NG(T )(k[t, t−1]) according
to our convention in Sect. 3.2), we write Yf ′,f (v) for the reduced L+Pf ′ -orbit of

xv := vL+Pf/L
+Pf
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in the ind-scheme FPf . Then Yf ′,f (v) is an integral smooth k-variety. Let Xf ′,f (v) denote its
(automatically reduced) Zariski closure in FPf . Then Xf ′,f (v) is a possibly singular integral
k-variety.

A fundamental fact is that the Bruhat order describes closure relations:

Xf ′,f (w) =
∐

v≤w

Yf ′,f (v) (3.4)

where v,w ∈ W̃f ′ \W̃/W̃f and v ≤ w in the Bruhat order on W̃f ′ \W̃/W̃f induced by the
Bruhat order ≤ on W̃ . The closure relations can be proved using Demazure resolutions and
thus, ultimately, the BN-pair relations; see e.g., [39, Prop. 0.1].

In what follows, we will often write Yf (resp. Xf ) for Yf,f (resp. Xf,f ).

3.5 Affine root groups

Given α ∈ �(G, T ), let uα : Ga → Uα be the associated root homomorphism. We can (and
do) normalize the uα such that for w ∈ W , wuα(x)w−1 = uwα(±x). Given an affine root
α + n, we define the affine root group as the k-subgroup Uα+n ⊂ LUα which is the image
of the homomorphism

Ga → LUα

x �→ uα(x tn).

Representing w ∈ W̃ by an element w ∈ NG(T ))(k((t))) according to our conventions,
we have

wUα+n w−1 = Uw(α+n). (3.5)

Associated to a root α > 0 we have a homomorphism ϕα : SL2 → G such that uα(y) =
ϕα

( [1 y
0 1

] )
, u−α(x) = ϕα

( [1 0
x 1

] )
, and ϕα sends the diagonal torus of SL2 into T . We

have the following commutation relations for the bracket [g, h] := ghg−1h−1:

[uα(tmx) , uβ(tn y)] =
∏

uiα+ jβ(cα,β;i, j (tmx)i (tn y) j ) (3.6)

[u−α(x) , uα(y)] = ϕα

([
1− xy xy2

−x2y 1+ xy + x2y2

])
(3.7)

where in the first relation α �= ±β and the product ranges over pairs of integers i, j > 0 such
that iα + jβ is a root, and the cα,β;i, j ∈ k are the structure constants for the group G over k
(see [42, 9.2.1]). The second relation is for α > 0 but an obvious analogue holds for α < 0.

3.6 The “negative” parahoric loop group

Fix a facet f in the closure of a. We write α + n
f
< 0 if the affine root α + n takes negative

values on f . Note that α + n
f
< 0 implies α + n < 0.

Let H be any affine k-group (not necessarily reductive). For m ≥ 1, let L(−m)H be the
group ind-scheme representing the functor

R �→ ker[H(R[t−1]) → H(R[t−1]/t−m)].
Note that L(−1)H = L−−H . Also, set L(−0)H := L−H .
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Let us define

L−−Pa := L(−1)G · Ū .

Note this is a group as it is contained in L−G and L(−1)G is normal in L−G. We wish to
define L−−Pf for any facet f in the closure of a. Its Lie algebra should be generated by Lie

subalgebras of the form Lie(Uα+n)where α+n
f
< 0. Thus it should be contained in L−−Pa.

In general it might not contain L(−1)G, but it should always contain L(−2)G.
Let P = MUP ⊃ B and P̄ = MŪP ⊂ B̄ be opposite parabolic subgroups of G with

the same Levi factor M ; let WM ⊂ W be the finite Weyl group generated by the simple
reflections for roots appearing in Lie(M). Then it is easy to prove that

ŪP =
⋂

w∈WM

wŪ .

This fact is the inspiration for the following definition (we thank Xuhua He for suggesting
this alternative to our original definition, which appears in Proposition 3.6.4).

Definition 3.6.1 We define L−−Pf to be the ind-affine group ind-scheme over k defined by

L−−Pf =
⋂

w∈W̃f

wL−−Pa,

where the intersection is taken in LG.

Here we consider conjugation byw ∈ W̃f viewed as an element of G(k[t, t−1]) according
to our convention in Sect. 3.2. This definition gives what it should in the “obvious” cases.
For example, if f = a, then W̃a = {e} and the r.h.s. is L−−Pa. If f = 0, the W̃0 = W and the
r.h.s. is L−−G.

We would like another, more concrete, understanding of L−−Pf , given in Proposition
3.6.4 below. Before that, we will need a series of definitions and lemmas.

For m ≥ 0, we define L−−Pa(m) to be the group ind-k-scheme representing the group
functor sending R to the preimage of T (R[t−1]/t−m) under the natural map

L−−Pa(R) ↪→ L−G(R) → G(R[t−1]/t−m). (3.8)

In particular L−−Pa(0) = L−−Pa.
Now we also define L−−Pa[m] to represent the functor sending R to the preimage of

B̄(R[t−1]/t−m) under (3.8). Further, for m ≥ 1 let

L−−Pa〈m〉 := L−−Pa[m] ∩ L−−Pa(m − 1).

Note that L−−Pa〈1〉 = L−−Pa[1] = L−−Pa. For m ≥ 1 we have

L−−Pa(m + 1) � L−−Pa(m) (3.9)

L−−Pa〈m + 1〉 � L−−Pa〈m〉. (3.10)

By Remark 3.1.1, (3.9) and (3.10) reduce to the case G = GLN , where they can be checked
by matrix calculations. Therefore, we have for m ≥ 1 a very useful chain of subgroups

L−−Pa〈m + 1〉 � L−−Pa(m) � L−−Pa〈m〉. (3.11)

Their usefulness hinges on the normalities in (3.11) and on the fact that the quotients in (3.11)
are isomorphic as k-functors to

L(−m)U

L(−m−1)U
,

L(−m+1)Ū

L(−m)Ū
, (3.12)

123

Author's personal copy



134 M. A. de Cataldo et al.

respectively. Let us prove this assertion. Using the k-variety isomorphisms U ∼= ∏
α>0Uα

(resp. Ū ∼= ∏
α<0Uα)—with indices taken in any order – it is easy to show

L(−m−1)U\L(−m)U ∼=
∏

α>0

Uα−m, L(−m)Ū\L(−m+1)Ū ∼=
∏

α<0

Uα−m+1. (3.13)

Then it is straightforward to identify the two subquotients of (3.11) with the terms in (3.12).
For example, we show that the map L(−m)U → L−−Pa〈m+ 1〉\L−−Pa(m) is surjective by
right-multiplying an element in the target by a suitable sequence of elements in the groups
Uα−m , α > 0, until it becomes the trivial coset.

Remark 3.6.2 In fact (3.27) gives isomorphisms of group functors, which are all abelian,
except for L(−1)Ū\L−Ū ∼= ∏

α<0Uα . Similarly, the groups L−−Pa〈m+2〉\L−−Pa〈m+1〉
and L−−Pa(m+1)\L−−Pa(m) are abelian for m ≥ 1.

Lemma 3.6.3 Let m ≥ 1. There is a factorization of functors of k-algebras

L−−Pa = L−−Pa〈m + 1〉 ·
∏

α>0

Uα{m, 1} ·
∏

α<0

Uα{m−1, 0}, (3.14)

where

• for j ≥ i , the factor Uα{ j, i} is the affine k-space whose R-points consist of the elements
of the form uα(x− j,αt− j + · · · + x−i,αt−i ), where x−l,α ∈ R for i ≤ l ≤ j ;

• the products
∏

α>0 and
∏

α<0 are taken in any order.

Proof From (3.11), (3.12), and (3.27), it is clear that

L−−Pa = L−−Pa〈m+1〉·
∏

α>0

Uα−m ·
∏

α<0

Uα−m+1 · · ·
∏

α<0

Uα−1 ·
∏

α>0

Uα−1 ·
∏

α<0

Uα, (3.15)

and the only task is to reorder the affine root groups to achieve (3.14).
By (3.6) and (3.7), any factor in

∏
α<0Uα−1 can be commuted to the right past all factors

of any element in
∏

α>0Uα−1, at the expense of introducing after each commutation an
element of L(−2)G, which can be conjugated and absorbed (since L(−2)G � L−−Pa) into the
group to the left of

∏
α<0Uα−1 ·∏α>0Uα−1, which is

L−−Pa〈m + 1〉 ·
∏

α>0

Uα−m ·
∏

α<0

Uα−m+1 · · ·
∏

α<0

Uα−2 ·
∏

α>0

Uα−2 = L−−Pa(2).

Thus the above product can be written

L−−Pa〈m + 1〉 ·
∏

α>0

Uα−m ·
∏

α<0

Uα−m+1 · · ·
∏

α<0

Uα−2 · (
∏

α>0

Uα−2 ·
∏

α>0

Uα−1
)

·(
∏

α<0

Uα−1 ·
∏

α<0

Uα

)
.

Similarly, we commute factors of
∏

α<0Uα−2 past factors of
(∏

α>0Uα−2
∏

α>0Uα−1
)
,

introducing commutators, which thanks to (3.6), (3.7) belong to L(−3)G, hence can be
absorbed into the group appearing to the left of

∏
α<0Uα−2 ·∏α>0Uα−2, which is

L−−Pa〈m + 1〉 ·
∏

α>0

Uα−m ·
∏

α<0

Uα−m+1 · · ·
∏

α<0

Uα−3 ·
∏

α>0

Uα−3 = L−−Pa(3).
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Continuing, we get an equality

L−−Pa = L−−Pa〈m + 1〉 ·
(
∏

α>0

Uα−m · · ·
∏

α>0

Uα−1

)
·
(
∏

α<0

Uα−m+1 · · ·
∏

α<0

Uα

)
.

Consider Uα{∞, i} := ∪ j≥iUα{ j, i} = L(−i)Uα . Clearly
∏

α<0Uα−m+1 · · ·∏α<0Uα

belongs to the group
∏

α<0

Uα{∞, 0} = L(−m)Ū ·
∏

α<0

Uα{m−1, 0}.

We then commute the part in L(−m)Ū to the left past the
∏

α>0Uα−m · · ·∏α>0Uα−1 factor;
the commutators which arise lie in L(−m−1)G, and so they, like L(−m)Ū , get absorbed into
L−−Pa〈m + 1〉. Finally we arrive at a decomposition

L−−Pa = L−−Pa〈m + 1〉 ·
(
∏

α>0

Uα−m · · ·
∏

α>0

Uα−1

)
·
∏

α<0

Uα{m − 1, 0},

and applying the same argument to
∏

α>0

Uα−m · · ·
∏

α>0

Uα−1 ⊆ L(−m−1)U ·
∏

α>0

Uα{m, 1}

yields the decomposition (3.14). The fact that the latter is really a direct product is straight-
forward. ��

For each root α, let iα,f be the smallest integer such that α − iα,f
f
< 0. Of course, iα,f ≥ 0

for all α, and iα,f ≥ 1 if α > 0.

Proposition 3.6.4 For any integer m ≥ 1 such that L−−Pa〈m + 1〉 ⊆ L−−Pf , we have the
equality of functors on k-algebras

L−−Pf = L−−Pa〈m + 1〉 · 〈Uα+n |α + n
f
< 0〉 (3.16)

= L−−Pa〈m + 1〉 ·
∏

α>0

Uα{m, iα,f } ·
∏

α<0

Uα{m − 1, iα,f } (3.17)

where 〈Uα+n |α + n
f
< 0〉 is the smallest ind-Zariski-closed subgroup of LG containing the

indicated affine root groups Uα+n. Moreover, (3.17) is a direct product of functors.

Proof Suppose α + n
f
< 0 and w ∈ W̃f . By (3.5), wUα+n = Uw(α+n). As W̃f preserves f ,

w(α + n)
f
< 0. Thus w(α + n) < 0, which implies that wUα+n ⊂ L−−Pa. This shows that

the r.h.s. of (3.16) is contained in L−−Pf . It is clear that (3.17) is contained in the r.h.s. of
(3.16). Therefore it remains to show that L−−Pf is contained in (3.17).

Suppose an element g in (3.14) belongs to L−−Pf , yet its factor corresponding to some
α does not lie in (3.17). Without loss of generality, the element g has trivial component in
L−−Pa〈m + 1〉, hence it belongs to U (R[t−1]) · Ū (R[t−1]); write it as a tuple g = (gβ)β ,
where β ∈ �(G, T ) and gβ ∈ Uβ(R[t−1]). We may write gβ = uβ(x− j,β t− j + · · · +
x−i,β t−i ) for some 0 ≤ i ≤ j depending on g, β.

We must have gα = uα(x− j,αt− j + · · · + xn,αtn) where α + n
f≥ 0, − j ≤ n ≤ 0, and

xn,α �= 0. We will show this leads to a contradiction. This will prove the proposition.
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First note that α + n
f≥ 0 implies n = 0 or n = −1. Indeed, on a we have −1 < α < 1,

so on f we have n − 1 ≤ α + n ≤ n + 1 by continuity. Therefore n + 1 ≥ 0.

Case 1: n = 0. Then by (3.14) we have α < 0. From α
f≥ 0, it follows that α = 0 on f , that

is, sα ∈ W̃f . Now as g ∈ L−−Pa ∩ sα L−−Pa, the reduction ḡ modulo t−1 belongs to

Ū ∩ sα Ū =
∏

β<0
sα(β)<0

Uβ .

But ḡ contains the nontrivial factor uα(x0,α), which is impossible since sα(α) > 0.

Case 2: n = −1. Since α − 1 < 0 and α − 1
f≥ 0, we have α − 1 = 0 on f , that is,

sα−1 = tα∨sα = sαt−α∨ ∈ W̃f .
By assumption, g′ := sα−1g ∈ L−−Pa ⊂ L−G. Writing gα = uα(x− j,αt− j + · · · +

x−1,αt−1), using that tα∨ is identified with α∨(t−1) ∈ T (k((t))), and using 〈α, α∨〉 = 2, we
compute

g′−α = u−α(±(x− j,αt
2− j + · · · + x−1,αt)). (3.18)

Since x−1,α �= 0, g′−α does not belong to U−α(R[t−1]).
On the other hand, g′ ∈ G(R[t−1]) ∩ (

U ′(R[t, t−1]) · Ū ′(R[t, t−1])), whereU ′ := sαU .
But (3.18) shows that either the Ū ′-component or the U ′-component of g′ does not lie in
Ū ′(R[t−1]), resp.U ′(R[t−1]). This contradicts Lemma 3.6.5 below (use U ′, Ū ′ as the U, Ū
there). The proposition is proved. ��
Lemma 3.6.5 Let R be a k-algebra, and suppose ū ∈ Ū (R[t, t−1]), and u ∈ U (R[t, t−1])
have the property that u · ū ∈ G(R[t−1]). Then ū ∈ Ū (R[t−1]) and u ∈ U (R[t−1]).
Proof Use the fact that the multiplication map U × Ū → G is a closed immersion of k-
varieties. Alternatively, use Remark 3.1.1 to reduce to the case G = GLN , and then use a
direct calculation with matrices. ��
3.7 Iwahori-type decompositions

Let L++Pa ⊂ L+Pa be the sub-group scheme over k representing the functor which sends
R to the preimage of U under the natural map

Pa(R[[t]]) ↪→ G(R[[t]]) → G(R[[t]]/t).
We abbreviate by setting U := L++Pa. For two facets f ′, f in the closure of a, we similarly
use the abbreviations P := L+Pf , UP := L−−Pf , Q := L+Pf ′ , and UQ := L−−Pf ′ .

Our first goal is to prove the following result.

Proposition 3.7.1 For w ∈ W̃ , we have a decomposition of group functors

UQ = (UQ ∩ wUP ) · (UQ ∩ wP), (3.19)

and moreover

UQ ∩ wP =
∏

a

Ua

where a ranges over the finite set of negative affine roots with a
f ′
< 0 and w−1a

f≥ 0, and the
product is taken in any order.
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We will need a few simple lemmas before giving the proof.
Let x0 ∈ a be a sufficiently general point that distinct affine roots take distinct values on

x0. For a, b ∈ �aff , define a ≺ b if and only if a(x0) < b(x0). This is a total order on �aff .
Let α1, . . . , αr be the positive roots, written in increasing order with respect to ≺. Choose
x0 sufficiently close to the origin so that for all m ≥ 1 we have

α1 − m ≺ α2 − m ≺ · · · ≺ αr − m ≺ −αr − m + 1 ≺ · · · ≺ −α1 − m + 1.

Choose an integer m >> 0 and list all the affine roots appearing explicitly in (3.15), as

r1, r2, . . . , rM ,

in increasing order for ≺. This sequence has the advantage that for 1 ≤ j ≤ M + 1

Hj := L−−Pa〈m+1〉 ·Ur1 · · ·Ur j−1 (3.20)

is a chain of groups, each normal in its successor, with Hj+1/Hj ∼= Ur j ( 1 ≤ j ≤ M). We
call Hr j the group to the left of r j . Note that H• refines the chain coming from (3.11).

Lemma 3.7.2 Let α > 0, and consider an integer k ≥ 0. Define subgroups

H−α−k = L(−k−1)G

Hα−k = L(−k)G ∩ L−−Pa〈k + 1〉.
Let σ ∈ {±1} and set β := σα. Then for β − k < 0 :
(1) Hβ−k � L−−Pa and Hβ−k lies in the group to the left of β − k.
(2) Assume −β − j < 0, i.e., j ≥ 0 and j ≥ 1 when σ = −1. Then

[Uβ−k,U−β− j ] ⊂ Hβ−k .

Proof Thanks to Remark 3.1.1, the normality statement can be reduced to G = GLN and
checked by a matrix calculation. Part (2) follows from (3.7). The rest is clear. ��
Lemma 3.7.3 Let a, b be negative affine roots. Then:

(i) Ha ⊆ Hb if a � b, and
(ii) [Ua,Ub] ⊂ Ha · 〈Uc |c � a + b〉.
Proof Part (i) is clear, and part (ii) follows from Lemma 3.7.2(2) combined with (3.6). ��
Proof of Proposition 3.7.1 First consider the case whereQ = B. Choosem >> 0 so that we
have L−−Pa〈m + 1〉 ⊂ L−−Pa ∩ wL−−Pf . Use (3.15) to write g ∈ L−−Pa in the form

g = h∞ · ur1 · · · ur j · · · urM ,

where h∞ ∈ L−−Pa〈m+1〉, and ur j ∈ Ur j . We wish to commute “to the far right” all terms

of the form ur j with w−1r j
f≥ 0, starting with the ≺-maximal such r j and continuing with

the other such r j in decreasing order. Fix a = r j . It is enough to prove, inductively on the
number t of commutations of ua = ur j (to the right) already performed, that we can write

h j · ur j+1 · · · ur j+t · ua · ub
with h j ∈ Hj , in the form

h′
j · ur j+1 · · · ur j+t · ub · ua,
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for a possibly different h′
j ∈ Hj . Write uaub = �ubua , where by Lemma 3.7.3(ii), � ∈

Ha · 〈Uc | c � a+b ≺ a〉. By Lemma 3.7.2(1), the ur j+1 · · · ur j+t -conjugate of theHa-factor
lies in Hj , so we can suppress it. As for the product of Uc-terms, we successively commute
ur j+t past each of them until it is adjacent to ub, introducing at each step more terms of the
same form as �; using Lemmas 3.7.2(1) and 3.7.3 as needed, we can assume these are in
〈Uc | c ≺ a〉. Then repeat with ur j+t−1 , etc. In the end, all the commutators have been moved
adjacent to h j and belong to Hj ; then h′

j is their product with h j .
Let us summarizewhatwe have done so far:we startedwith the direct product factorization

(3.15), then we rearranged the Ua-factors, all the time retaining the factorization property,
until at the end we achieved a factorization

U = (U ∩ wUP
) ·

∏

a

Ua,

where a ranges over the set of roots with a < 0 and w−1a
f≥ 0. It is therefore enough to

prove that the closed embedding
∏

a

Ua ↪→ U ∩ wP

is an isomorphism. It suffices to check this after base-change to k̄, so henceforth we work
over k̄.

It is enough to prove that U ∩ wP is generated by the subgroups Ua which it contains.
Choosem >> 0 large enough that L−−Pa〈m+1〉∩ wP = {e} (scheme-theoretically): this is
possible because the off-diagonal coordinates of wP (in the ambient GLN of Remark 3.1.1)
are zero or have t-adic valuation bounded below, while the diagonal coordinates lie in R[[t]]
(see Lemma 3.7.5 below). Let us prove by induction on j that Hj ∩ wP is generated by the
subgroups Ua it contains (see (3.20)); the case j = 1 was discussed above. Now abbreviate
H = Hj , Ua = Ur j , P = wP . It is enough to prove that HUa ∩ P equals H ∩ P or
(H ∩ P)Ua . We intersect the chain (3.20) with P , and get an inclusion of group schemes

H ∩ P\HUa ∩ P ↪→ H\HUa ∼= Ua .

If the left hand side is not trivial, then, since themorphism is T (k̄)-equivariant, its image is not
finite and hence it is all ofUa , and we have an isomorphism H ∩ P\HUa ∩ P

∼→ Ua . Using
the Lie algebra analogue of this, a variant of [27, 28.1] implies that (H ∩ P)Ua = HUa ∩ P ,
as desired. This completes the proof in the case where Q = B.

Nowwe consider the general case, whereQ = L+Pf ′ . By intersecting (3.11) with L−−Pf ′
we obtain an analogue of (3.15) for m >> 0:

L−−Pf ′ = L−−Pa〈m + 1〉 ·U∗
r1 · · ·U∗

rM (3.21)

where

U∗
r j =

{
Ur j , if r j

f ′
< 0

e, otherwise.

We have a chain of subgroups H∗
j = L−−Pa〈m + 1〉 ·U∗

r1 · · ·U∗
r j−1

, and the same argument
as above works.

Finally, we may order the Ua-factors in UQ ∩ wP freely, thanks to [7, Lem.2.1.4]. ��
The following result is proved like Proposition 3.7.1.

123

Author's personal copy



Frobenius semisimplicity for convolution morphisms 139

Proposition 3.7.4 In the notation above, we have a factorization of group functors

U = (U ∩ wUP ) · (U ∩ wP), (3.22)

and U ∩ wUP = ∏
a Ua, where a ranges over the finite set of affine roots with a > 0 and

w−1a
f
< 0, and the product is taken in any order.

We conclude this subsection with a lemma needed to complete the proof of Proposition
3.7.1.

Lemma 3.7.5 For any faithful representation G ↪→ GL(V ), there is a suitable k-basis
e1, . . . , eN for V identifying GL(V ) with GLN , and a corresponding “diagonal” torus TN
as in Remark 3.1.1, such that the diagonal entries of L+Pf (R) lie in R[[t]].
Proof For general k-algebras R, the proof uses some of the Tannakian description of Bruhat–
Tits buildings and parahoric group schemes, and thuswewill need to cite results from [25,45].
For reduced k-algebras (which suffice for the purposes of this paper), one can avoid citing
this theory; see Remark 3.7.7. We abbreviate by writing O = k[[t]] and K = k((t)).

Let x ∈ X∗ be a point in the apartment of B(G, K ), let V be any finite-dimensional
k-representation of G, and write VO for the representation V ⊗k O of GO . Then in [25,45]
is defined the Moy–Prasad filtration by O-lattices in V ⊗k K

Vx,r :=
⊕

λ∈X∗(T )

Vλ ⊗O Ot�r−〈λ,x〉 , (3.23)

where r ∈ R and Vλ is the λ-weight space for the action of TO on VO . Note that Vx,r ⊆ Vx,s

if r ≥ s and Vx,r+1 = tVx,r . One can define the automorphism group Aut(Vx,•) to be the
O-group-functor whose points in an O-algebra R′ consist of automorphisms of Vx,•, that is,
of tuples (gr )r ∈ AutR′(Vx,r ⊗O R′) such that the “diagram commutes” and gr+1 = gr for
all r . The following is a consequence of [25]. ��
Lemma 3.7.6 If V is a faithful representation of G and x ∈ f , then L+Pf (R) is a subgroup
of L+Aut(Vx,•)(R) for every k-algebra R.

Now let λ1, . . . , λt be the distinct T -weights appearing in V . Choose a split maximal
torus T ′ of GL(V ) containing T ⊂ G ⊂ GL(V ). Let λi j be the distinct weights of T ′ which
restrict to λi , and let e1, . . . , eN be a basis of eigenvectors corresponding to {λi j }i, j for the
T ′-action on V , listed in some order. Using this we identify GL(V ) ∼= GLN and T ′ ∼= TN ,
the “diagonal” torus. In this set-up, L+Aut(Vx,•) is the group k-scheme parametrizing R[[t]]-
automorphisms of �V,f• ⊗O R[[t]] for some partial chain of O-lattices · · ·�V,f

i ⊂ �
V,f
i+1 ⊂

· · · ⊂ ON of the form

�
V,f
i = tai1Oe1 ⊕ · · · tai NOeN

for certain integers ai j . It is enough to prove that the diagonal elements of any R[[t]]-
automorphism of a single �

V,f
i ⊗O R[[t]] belong to R[[t]]. But this follows from a simple

computation with matrices. ��
Remark 3.7.7 If we only want to prove L−−Pf,red × L+Pf → LGred is an open immersion
(which iswhatweuse in all applications after Sect. 3.9), thenweneed L−−Pf (k̄)∩L+Pf (k̄) =
{e}, and thus we need Lemma 3.7.5 for R = k̄. In lieu of Lemma 3.7.6, this can be proved by
showing that L+Pf (k̄) is contained in some parahoric subgroup L+PGLN

fN
(k̄) of an ambient
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GLN : note that x belongs to some facet of the ambient apartment; as Pf (k̄[[t]]) fixes that point
and has trivial Kottwitz invariant (cf. [38, Section 5], [24, Prop. 3]), it fixes all the points in
the ambient facet and belongs to the parahoric subgroup for that ambient facet.

3.8 Parahoric big cells

3.8.1 Statement of theorem

Our aim is to prove the following theorem, which plays a fundamental role in this article.
Theorem 2.3.1 The multiplication map gives an open immersion

L−−Pf × L+Pf −→ LG.

It is clear that L−−Pf ∩ L+Pf = {e}, ind-scheme-theoretically: take Q = P and w = 1
in Proposition 3.7.1. Thus, we just need to check that L−−Pf · L+Pf is open in LG.

Suppose f ′ is in the closure of f . By [7, 1.7], the inclusion Pf (k[[t]]) ⊂ Pf ′(k[[t]]) prolongs
to a homomorphism of group k[[t]]-schemes Pf → Pf ′ and hence to a homomorphism of
group k-schemes L+Pf → L+Pf ′ . The latter is a closed immersion: as Pf is finite type and
flat over k[[t]], it has a finite rank faithful representation over k[[t]] ([7, 1.4.3]), which implies
L+Pf ↪→ LPf = LG is a closed immersion. We obtain natural morphisms of ind-schemes

πf ′ : LG
πf−→ LG/L+Pf

πf ′,f−→ LG/L+Pf ′ . (3.24)

By [38, Thm.1.4] the morphisms πf and πf ′ are surjective and locally trivial in the étale
topology, hence in particular πf , πf ′ , and πf ′,f are open morphisms. As πf is open, the
multiplication map L−−Pf × L+Pf → LG is an open immersion if and only if the map
L−−Pf → FPf given by g �→ g · xe is an open immersion. This allows us to define the big
cell.

Definition 3.8.1 We call the image of the open immersion L−−Pf → FPf , namely

Cf := L−−Pf · xe,
the big cell at xe; it is a Zariski-open subset of the partial affine flag variety FPf .

Before proving Theorem 2.3.1, we state an immediate consequence, which is used to
prove Lemma 3.9.1.

Corollary 3.8.2 The morphisms in (3.24) are locally trivial in the Zariski topology, and in
particular, if R is local, we have

FPf (R) = G(R((t)))/Pf (R[[t]]).

3.8.2 Preliminary lemmas

Lemma 3.8.3 If Theorem 2.3.1 holds for G and a, it also holds for G and f .

Proof Using (3.31) we have

L−−Pa · L+Pa = L−−Pf · (L−−Pa ∩ L+Pf ) · L+Pa.

By the result for a, this is an open subset of LG. Its right-translates under L+Pf cover
L−−Pf · L+Pf . ��
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Our plan is to reduce the theorem to the group SLd . We may choose a closed embedding
G ↪→ SLd , and by Remark 3.1.1, well-chosen Borel and unipotent radical subgroups of SLd

restrict to the corresponding objects in G. However, it does not follow from this that the big
cell ŪSLd BSLd in SLd restricts to its counterpart in G. In order to reduce the theorem to SLd ,
therefore, we need to use a more flexible notion of big cell, where the restriction property is
automatic.

For a homomorphism of k groups λ : Gm → G, we define subgroups PG(λ) and UG(λ)

of G to consist of the elements p (resp.u) with lim
t→0

λ(t)pλ(t)−1 exists (resp.= e); see [8,

Section 2.1]. Define �G(λ) = UG(−λ) · PG(λ), a Zariski-open subset of G isomorphic to
UG(−λ) × PG(λ), by [8, Prop. 2.1.8]. If λ is B-dominant and regular, �G(λ) = Ū B, the
usual big cell in G.

Lemma 3.8.4 Suppose π : G → G ′ is an inclusion. Let λ : Gm → G be a homomorphism
and define λ′ = π ◦ λ. Then

π−1�G ′(λ′) = �G(λ). (3.25)

Proof This follows from [8, Prop. 2.1.8(3)]. ��
For the next lemma, we fix a B-dominant and regular homomorphism λ : Gm → T ↪→ G,

and suppose we have a homomorphism of k-groups f : G ι
↪→ SLd

ρ→ SL(V ) where ι is a
closed embedding identifyingG with the scheme-theoretic stabilizer in SLd of a line L = kv
in V . (Given ι, such a pair (V, L) exists by e.g. [8, Prop.A.2.4].) Let λ′ = ι ◦ λ, and let
P(λ′) (resp. U(−λ′)) be the groups L+PSLd

f ′ (resp. L−−PSLd
f ′ ) for SL(V ) associated to the

parabolic subgroup P(λ′) (resp. opposite unipotent radical U (−λ′)) of SLd (i.e. P(λ′) is the
“reduction modulo t of P(λ′) ⊂ SLd(k[[t]]),” etc.).
Lemma 3.8.5 In the above situation,

ι−1(U(−λ′) · P(λ′)
) = L−−Pa · L+Pa. (3.26)

Proof The proof is a variation on the theme of [15, proof of Cor. 3], which concerns the case
f = 0. Think of ι as an inclusion. By construction, we have LG ∩ U(−λ′) = L−−Pa and
LG ∩ P(λ′) = L+Pa, which proves the r.h.s. of (3.26) is contained in the l.h.s.

Suppose we have g− ∈ U(−λ′) and g+ ∈ P(λ′) and g− · g+ ∈ LG. We need to show that
g−, g+ ∈ LG. Let Lv be the scheme-theoretic line generated by v.Write g−(0) (resp. g+(0))
for the value of g− (resp. g+) at t−1 = 0 (resp. t = 0), and also set g−∞ := g−(0)−1g−
(resp. g+∞ := g+g+(0)−1). Starting with

ρ(g−(0)g−∞) · ρ(g+∞g+(0)) v ∈ Lv, (3.27)

comparing coefficients of t−1 and t shows that ρ(g−(0)) · ρ(g+(0)) v ∈ Lv , and hence
g−(0) · g+(0) ∈ G ∩ (

U (−λ′) · P(λ′)
)
. By Lemma 3.8.4, we see that g−(0) ∈ G and

g+(0) ∈ G. Now going back to (3.27), we deduce

ρ(g−∞ · g+∞) v ∈ Lv.

Then (looking at R-points), there is a c ∈ R× such that

ρ(g−∞)−1 cv = ρ(g+∞) v.

Therefore this element belongs both to cv + t−1V [t−1] and to v + tV [[t]]; thus both sides
are equal to cv, and we see g−∞, g+∞ ∈ LG, as desired. ��
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3.8.3 Reduction to case SLd , f = a

Suppose we know the theorem holds for SLd when the facet is a particular alcove. Since all
alcoves are conjugate under the action of SLd(k((t))) on its Bruhat-Tits building, the theorem
holds for SLd and any alcove. Then by Lemma 3.8.3, it holds for SLd and any facet. Therefore
the subset U(−λ′) · P(λ′) of Lemma 3.8.5 is open in LSLd , and hence by that lemma, the
theorem holds for any G when the facet is an alcove. By Lemma 3.8.3 again, it holds for any
G and any facet.

3.8.4 Proof for SLd , f = a

In [15, p. 42–46], Faltings proved Theorem 2.3.1 for f = 0 and f = a, for any semisimple
group G. For SLd and f = 0, this result was proved earlier by Beauville and Laszlo [2,
Prop. 1.11].

Here, we simply adapt the method Faltings used for SLd and f = 0 to elucidate, in an
elementary way, the case SLd and f = a. (For the most part, this amounts to giving an
elaboration of the remarks at the end of [15, Section 2].)

Let R be a k-algebra, and we define for 0 ≤ i ≤ d

�i := R[[t]]i ⊕ (
t R[[t]])d−i

Mi :=
(
t−1R[t−1])i ⊕ R[t−1]d−i .

We have �0 ⊂ �1 ⊂ · · · ⊂ �d = t−1�0 and M0 ⊃ M1 ⊃ · · · ⊃ Md = tM0. Also,

�i ⊕ Mi = R((t))d ,

for 0 ≤ i ≤ d .
Write H = SLd . The affine flag varietyFH for H is the ind-scheme parametrizing chains

of projective R[[t]]-modules L0 ⊂ L1 ⊂ · · · ⊂ Ld = t−1L0 ⊂ R((t))d , such that

(1) tn�i ⊂ Li ⊂ t−n�i for all i and n >> 0
(2) det(Li ) = det(�i ) = td−i R[[t]].

We consider the complex of projective R-modules, supported in degrees−1 and 0 and of
virtual rank 0,

0 −→ Li ⊕ Mi

tn�i ⊕ Mi

ϕ−→ R((t))d

tn�i ⊕ Mi
−→ 0.

The determinant of this complex determines a line bundle Li on FH and the determinant
of ϕ gives a section νi of Li . Let �i be the zero locus of νi . Then

⋂
i FH − �i is an open

subset of FH and consists precisely of the points L• satisfying Li ⊕ Mi = R((t))d for all
i . This locus contains the L−−Pa-orbit of xe, as it contains the base point xe = �• and is
stable under L−−Pa since this stabilizes M•. Our goal is to prove that the locus is precisely
L−−Pa · xe.

Assume L• ∈ ⋂
i FH − �i . Write the i-th standard basis vector ei as

ei = λi +
⎛

⎝
∑

j≤i

t−1a ji e j +
∑

j>i

a ji e j

⎞

⎠ ∈ Li ⊕ Mi
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where a ji ∈ R[t−1] and λi ∈ Li , ∀i, j . It follows that there is a uniquematrix h ∈ R[t−1]d×d

whose reduction modulo t−1 is strictly lower triangular, such that h(ei ) ∈ Li for all i . Since
t Ld ⊆ Li , we easily see that h(�i ) ⊂ Li for all i .

We claim that h(�i ) = Li for all i . We start with i = d . It is enough to prove h(�d)

generates the R[[t]]-module Ld/tn�d . Each element in this quotient can be represented by
an element f ∈ Ld ⊂ �d ⊕ Md whose projection to �d is an R-linear combination of
t l e1, . . . , t l ed for l < n. But h(e j ) is e j plus an R[t−1]-linear combination of the elements
t−1e1, . . . , t−1e j , e j+1, . . . , ed . Thus by decreasing induction on l (and working with the
coefficients of e1, e2, . . . , in that order) we can make the �d -projection of f and thus also
f itself vanish, proving h(�d) = Ld .
Since det(�d) = det(Ld), we see det(h) ∈ R[[t]]× ∩ (1 + R[t−1]), so det(h) = 1 and

therefore h ∈ L−−Pa. Also h induces an isomorphism �d/�0
∼→ Ld/L0. Therefore, by

induction on i , h : �i/�0
∼→ Li/L0 and h(�i ) = Li for all i .

We conclude that the morphism
⋂

i FH − �i → L−−Pa defined by L• �→ h is inverse
to the L−−Pa-action on �• = xe. This completes the proof of Theorem 2.3.1. ��
3.9 Uniform notation for the finite case G and for the affine case LG

We introduce a unified notational system that allows us to discuss the usual partial flag
varieties and the partial affine flag varieties at the same time. We use symbols G, W , etc., to
abbreviate the objects above them in the following table:

LG W̃ Saff L+Pa L+Pf L++Pa L−−Pa L−−Pf W̃f LG/L+Pf Yf (w) Xf ′,f (w)

G W S B P U U UP WP G/P YP (w) XP ′P (w)

In particular, we will denote the big cell Cf in LG/L+Pf = G/P attached to L+Pf = P
by

CP = UP xe.

We define the big cell at xv to be
vCP = vUP xv. (3.28)

Also, if P = L+Pf , we sometimes write
P
< intead of

f
<. From now on, we will call P a

“parahoric” group. Recall that WP is always a finite subgroup of W = W̃ .
The new notation is modeled on the customary notation for finite flag varieties. If P ⊃ B

is a standard k-rational parabolic subgroup of G, it corresponds to a standard parahoric
subgroup P , and we have embeddings G/P ↪→ G/P , and similar inclusions on the level of
Schubert varieties,Weyl groups, etc. All of our results for convolutionmorphisms or Schubert
varieties for partial affine flag varieties for LG have analogues for partial flag varieties for
G. The big cells CP are then just the more standard objects ŪP P/P ⊂ G/P .

Henceforth, when we discuss G/P , XP (w), etc., we shall give these object their reduced
structure.

The following is familiar and it exemplifies the use of big cells, in this case in G/P .

Lemma 3.9.1 (G/B → G/P is a P/B-bundle) The k-ind-projective map of k-ind-projective
varieties G/B → G/P is a Zariski locally trivial fibration over G/P with fiber the geomet-
rically integral, smooth, projective, rational and homogenous k-variety P/B.
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Proof We may cover G/P with open big cells gCP = gUP xe. It is immediate to verify that
the inverse image in G/B of such a set is isomorphic to the product gŪP × (P/B): send
(huP , p) �→ huP p. ��

For reference purposes we list some consequences of Propositions 3.7.1 and 3.7.4: for
v ∈ W̃

v−1U = ( v−1U ∩ UP ) (v
−1U ∩ P) (3.29)

vUP = (U ∩ vUP )(U ∩ vUP ) (3.30)

U = UP · (U ∩ P). (3.31)

At least some of these were known before (although we could not locate proofs in the
literature). For example, the decomposition U = (U∩ wU)(U∩ wU), a special case of (3.30),
was stated by Faltings [15, p. 47–48].

3.10 Orbits and relative position

For the purpose of discussing orbits, let us fix, temporarily and for ease of exposition, a
configuration of parahoric subgroups of G: Z ⊇ X ⊇ B ⊆ Y.

The groupW contains the finite subgroupsWZ ⊇ WX ⊇ WB = {1} ⊆ WY . The double
coset spaces ZWY := WZ\W/WY inherit a natural poset structure from (W,≤).

We have the natural surjective map of posets XWY → ZWY .
The Bruhat-Tits decomposition takes the form G = ∐

z∈ZWY ZzY.

For every z ∈ ZWY , we have the finite union decomposition YZY (z) = ∐
x �→z YXY (x)

of the corresponding Z-orbit in G/Y , where x ∈ XWY . Similarly, for the orbit closures
XZY (z) = ∐

ζ≤z YZY (ζ ) (inequality in the poset ZWY ). Of course, we have that XZY (z) =
ZzY/Y, etc.

The decomposition (3.29) implies that YBP (v) is an affine space:

YBP (v) = Uv xe = v
(

v−1U ∩ UP
)
xe ∼= v−1U ∩ UP =

∏

α+n∈S
Uα+n ∼= A|S| (3.32)

where S = {α+n | v(α+n) > 0, and α+n
P
< 0}. The dimension |S| can also be described

as the length �(vmin), where vmin is the minimal representative in the coset vWP .

Lemma 3.10.1 Let X be an ind-projective ind-scheme over k. Let Y ⊆ X be a closed
sub-ind-scheme over k that is also an integral k-scheme. Then Y is a k-projective scheme.

Proof Let X = ∪n≥0Xn be an increasing sequence of closed projective k-subschemes of
X which exhaust X . There is n0 such that the generic point of Y is contained in Xn0 . The
intersection Y ∩ Xn0 is a closed subscheme of Y and contains the generic point of Y ; since Y
is reduced, Y = Y ∩Xn0 . It follows that Y is a closed k-subscheme of the projective k-scheme
Xn0 and, as such, it is k-projective. ��

Faltings [15] (in the G/B-setting) and Pappas-Rapoport [38] have proved that the P-orbit
closures in G/P , when given their reduced structure, are geometrically integral, normal,
projective k-varieties. The following is a consequence of their results.

Proposition 3.10.2 (Normality of orbit closures) The orbit closures XZY (z), endowed with
their reduced structure, are geometrically integral, normal, projective k-varieties.
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Proof Let zmax ∈ W be the maximal representative of z. Then BzmaxB = YzmaxY . It
follows that the natural map p : XBB(zmax ) → XZY (z) is a Zariski locally trivial fiber
bundle with fiber the geometrically connected, nonsingular and projective k-variety Y/B, as
it coincides with the full pre-image of XZY (z) under the natural projectionmap G/B → G/Y
(cf.Lemma 3.9.1).

According to [15,38], XBB(zmax ), being a B-orbit closure in G/B endowed with the
reduced structure, is a geometrically integral, normal, projective k-variety. By using the fact
that p is a Zariski locally trivial bundle, and the fact that XBB(zmax ) is quasi-compact and
of finite type over k, we have that the same is true for XZY (z). According to Lemma 3.10.1,
the orbit-closure XZY (z) is then k-projective.

The desired conclusions, except the already-proved projectivity assertion, follow by
descending the desired geometric integrality and normality from the pre-image to the image,
along the smooth projection map p. ��

Let us now fix a configuration of parahoric subgroups of G: Q ⊇ P ⊇ B. We have the
natural projections, which are maps of posets

W

PWB BWP

QWB PWP BWQ

QWP PWQ

QWQ.

(3.33)

Each rhomboid, including the big one, is determined by two of the three parahorics. For each
rhomboid, we denote the system of images of an element w in the summit as follows

w

′w w′

w′′,

(3.34)

Of course, when dealing with orbits and their closures, we write YB(w) in place of YBB(w),
etc.

Consider the rhomboid determined by P,Q. The pre-image in QWP of w′′ is the finite
collection of closures ofQ-orbits in G/P that surject onto XQ(w′′). The pre-image in PWQ
of w′′ is the finite collection of closures of P-orbits in G/Q that are in the closure XQ(w′′).
The pre-image in PWP of w′′ is the finite collection of the closure of P-orbits in G/P that
map into XQ(w′′) and, among them, we find XP (wmax ) i.e. the full-preimage in G/P of
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XQ(w′′) underG/P → G/Q, so that the resultingmap is a Zariski locally trivialP/B-bundle.
If w1, w2 �→ w′′, then we have

Pw1P/P → Qw1Q/Q = Qw′′Q/Q = Qw2Q/Q ← Pw2P/P (3.35)

and Qw′′Q/Q is the smallest Q-orbit-closure in G/Q containing the P-orbits-closures
PwiQ/Q.

Definition 3.10.3 We say that w ∈ PWP is of Q-type if XP (w) is Q-invariant; this is
equivalent to having PwP = QwP; it is also equivalent tow admitting a lift in QWP ⊆ W ,
the set of maximal representatives of QWP inside W . We say that it is Q-maximal if it is
the maximal representative of its image w′′; this is equivalent to PwP = QwQ; it is also
equivalent to w admitting a lift in QWQ ⊆ W , the set of maximal representatives of QWQ
inside W .

Note that being of Q-type means that XP (w) = XP (w′), and it implies that XP (w) →
XQ(w′′) is surjective (the converse is not true: take G/P # P/P → Q/Q ∈ G/Q). Note that
being of Q-maximal type is equivalent to XP (w) → XQ(w′′) being a Zariski locally trivial
bundle with fiber Q/P . Finally, if w is Q-maximal, then w is of Q-type, but not vice versa.

Let P1,P2 ∈ G/P . According to the Bruhat-Tits decomposition of G, there is a unique
and well-defined w ∈ PWP such that, having written Pi := giP , gi ∈ G, we have that
g−1
1 g2 ∈ PwP .

Definition 3.10.4 Given P1, P2 ∈ G/P we define their relative position to be the unique
element w ∈ PWP such that g−1

1 g2 ∈ PwP , and we denote this property by P1
w–– P2 We

say that their relative position is less then or equal to w if their relative position is so, i.e.
g−1
1 g2 ∈ PwP, and we denote this property by P1

≤w–– P2.

The following statements can be interpreted at the level of k or k̄-points, but we will
suppress this from the notation. We have

YB(w) = {B′ | B w––B′} and XB(w) = {B′ | B ≤w–– B′}.
The BN-pair relations hold for v ∈ W and s ∈ S:

BvBsB =
{
BvsB, if v < vs,

BvsB ∪ BvB, if vs < v.
(3.36)

sBs � B.

Note that for every v ∈ W and s ∈ S, there is an isomorphism {B′ | vB ≤s––B′} ∼= P1 and
{B′ | vB ≤s––B′} ⊂ YB(v) ∪ YB(vs).

4 Twisted products and generalized convolutions

4.1 Twisted product varieties

Let r ≥ 1 and let w• = (w1, . . . wr ) ∈ (PWP )r .

Definition 4.1.1 The twisted product scheme associated with w• is the closed k-ind-
subscheme of (G/P)r defined by setting

XP (w•) :=
{
(P1, . . . , Pr ) | P ≤w1–– P1

≤w2–– · · · ≤wr–– Pr
}

. (4.1)
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endowed with the reduced structure.

Lemma 4.1.2 Twisted products XP (w•)areZariski-locally isomorphic to the usual products
XP (w1) × · · · × XP (wr ).

Proof For every 1 ≤ i ≤ r , pick any point Pi ∈ XP (wi ), and γi ∈ G so that Pi = γiP .
In particular, γi ∈ PwiP. Intersect with the big cell (3.28) at γiP to obtain the dense open
subset XP (wi )

⋂
γiCP . Its elements have the form γi ui , for a unique ui ∈ ŪP , and with

γi , γi ui ∈ PwiP. Let γ := (γ1, . . . , γr ), and set Aγ := ∏r
i=1 XP (wi )

⋂
γiCP . Then Aγ is

open and dense in
∏r

i=1 XP (wi ), and its points have the form (γ1u1, . . . , γr ur ), γi , γi ui ∈
PwiP. Define the map Aγ → XP (w•) by the assignment:

(γ1u1, . . . , γr ur ) �→ (γ1u1, γ1u1γ2u2, . . . , γ1u1γ2u2 · · · γr ur ) .

Set γ̃i = ∏i
j=1 γ j u j ∈ XP (w•). The image of this map in XP (w•) is contained in the

open and dense set Ãγ̃ defined by requiring that: g1 ∈ π−1(XP (w1)
⋂

γ1CP ), g1−1g2 ∈
π−1(XP (w2)

⋂
γ2CP ), etc., where π : G → G/P . The map Aγ → Ãγ̃ admits an evident

inverse and is thus an isomorphism. Finally, every point in (g1, . . . gr ) ∈ XP (w•) can be
written in the form gi = ∏i

j=1 γ j , with γi ∈ XP (wi ) for every 1 ≤ i ≤ r (just take

γi := g−1
i−1gi , with g0 := 1). It follows, that the Ãγ̃ , with γ ∈ ∏r

i=1 XP (wi ), cover XP (w•)
��

Lemma 4.1.3 The first projection defines a map pr1 : XP (w•) → XP (w1) which is a
Zariski locally trivial bundle over the base with fiber XP (w2, . . . , wr ).

Proof We trivialize over the intersection XP (w1) ∩ γ CP with a big cell centered at a fixed
arbitrary point of XP (w1): denote by (P2, . . . , Pr ) the points in XP (w2, . . . , wr ) and define
the trivialization of the map pr1 over XP (w1) ∩ γ CP by the assignment:

(γ1u1, (P2, . . . , Pr )) �−→ (γ1u1P, γ1u1P2, . . . , γ1u1Pr ).

��

Corollary 4.1.4 The twisted product varieties XP (w•) are geometrically integral, normal,
projective k-varieties.

Proof The twisted product XP (w•) is a k-scheme of finite type. This can be easily proved
by induction on r , using the fact that pr1 : XP (w•) → XP (w1) is surjective, Zariski locally
trivial, and has fibers isomorphic to XP (w2, . . . , wr ).

Next, we prove that XP (w•) is geometrically irreducible. We may replace the field of
definition k with its algebraic closure. We argue as before by induction on r . The Zariski
locally trivial bundle map pr1 above is open. Then irreducibility follows from the fact that
any open morphism of schemes with irreducible image and irreducible fibers, has irreducible
domain.

Since XP (w•) is given its reduced structure, it is geometrically integral. As it is closed
inside the ind-scheme (G/P)r , Lemma 3.10.1 implies that it is k-projective.

Finally, the normality can be checked Zariski locally, hence follows from the normality
of each Schubert variety XP (wi ) (Proposition 3.10.2) thanks to Lemma 4.1.2. ��
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4.2 Geometric P-Demazure product on PWP

Definition 4.2.1 Define the geometric P-Demazure product as the binary operation

� = �P : PWP × PWP → PWP (w1, w2) �→ w1 � w2, (4.2)

by means of the defining equality

XP (w1 � w2) := Im
{
XP (w1, w2)

pr2→ G/P
}

, (4.3)

the point being that, since the image is irreducible, closed and P-invariant, then it is the
closure of a P-orbit. More generally, given w• ∈ (PWP )r , we define

XP (w�) := XP (w1 � · · · � wr ) := Im
{
XP (w•)

prr→ G/P
}

. (4.4)

The resulting surjective and k-projective map

p : XP (w•) → XP (w�) (4.5)

is called the convolution morphism associated with w• ∈ (PWP )r .

Remark 4.2.2 We have an inclusion XB(w1w2) ⊆ XB(w1 � w2), which in general is strict.

Remark 4.2.3 (Relation geometric/standard Demazure product) In Sect. 4.3 below, we shall
show that the geometric Demazure product can be easily described in terms of the usual
notion of Demazure product defined on the group W .

Remark 4.2.4 By definition, givenw• ∈ (PWP )r and Pr ∈ XP (w�), there is (P1, . . . , Pr ) ∈
XP (w•)mapping to it.More generally, given1 ≤ s ≤ r , the naturalmap XP (w1, . . . , wr ) →
XP (w1 � · · · � ws, ws+1 � · · · � wr ) is also surjective: given (Ps = gP, Pr ) in the target, take
(P1, . . . , Ps−1, gP) ∈ XP (w1 � · · · �ws) and (Ps+1, . . . , Pr ) ∈ XP (ws+1 � · · · �wr ). Then,
by the invariance of relative position with respect to left multiplication by elements g ∈ G,
we have that (P1, . . . , Ps−1, gP, gPs+1, . . . , gPr ) ∈ XP (w�) and maps to (Ps, Pr ).

Lemma 4.2.5 (PWP , �P ) is an associative monoid with unit the class 1 ∈ PWP .

Proof Fix an arbitrary sequence 1 ≤ i1 < · · · < im = r . It is easy to verify, by using Remark
4.2.4, that the natural map

XP (w�) → XP (w1 � · · · � wi1 , . . . , wim−1+1 � · · · � wim=r ), (P1, . . . , Pr ) �→ (Pi1 , . . . , Pim )

is surjective. This implies that

w1 � · · · � wr = (w1 � · · · � wi1) � (wi1+1 � · · · � wi2) � · · · � (wim−1+1 � · · · � wim=r ),

and in particularw1 � · · ·�wr is the r -fold extension of an associative productw1 �w2 which,
as it is immediate to verify, has the properties stated in the lemma. ��

In general, we have the following inequality in the poset (QWQ,≤Q)

(w1 �P · · · �P wr )
′′ ≤Q w′′

1 �Q . . . �Q w′′
r , (4.6)

more precisely, if we set w�P := w1 �P · · · �P wr and w′′
�Q := w′′

1 �Q · · · �Q w′′
r , then we

have the following inclusions, each of which may be strict (cfr. (3.35))

Pw�PQ/Q ⊆ Qw�PQ/Q = Qw′′
�PQ/Q ⊆ Qw′′

�QQ/Q. (4.7)
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The inequality (4.6) also follows immediately from the comparison with the standard
Demazure product in 4.3.

The notion of Q-type (cfr. Definition 3.10.3) is related to the potential strictness of the
inclusions in (4.7).

Proposition 4.2.6 Assume that w• ∈ (PWP )r is of Q-type (resp., Q-maximal), i.e. that wi

is of Q-type (resp. Q-maximal), ∀i . Then we have:
(i) (w1 �P · · · �P wr )

′′ = w′′
1 �Q . . . �Q w′′

r ;
(ii) w1 �P . . . �P wr is of Q-type (resp., Q-maximal).

Proof We have the commutative diagram

XP (w•)

a•

XP (w1 �P · · · �P wr )

a

⊆ G/P (r -th copy)

XQ(w′′• ) XQ(w′′
1 �Q · · · �Q w′′

r ) ⊆ G/Q (r -th copy),

(4.8)

where the horizontal convolution morphisms are surjective by their very definition.
We claim that a• is surjective. Let (g1Q, . . . , grQ) ∈ XQ(w′′• ). Then, having set for

convenience g0 := 1, we have g−1
i−1gi ∈ QwiQ. The assumption that the wi are of Q-type,

implies that XP (wi ) → XQ(w′′
i ) is surjective, so that, for every i there is qi ∈ Q such that

g−1
i−1giqi ∈ PwiP , which, again by wi being of Q-type, equals QwiP. Clearly, the r -tuple

(g1q1P, . . . grqrP) maps to (g1Q, . . . , grQ). In order to establish the surjectivity of a•, it
remains to show that (g1q1P, . . . , grqrP) ∈ XP (w•), i.e. that (gi−1qi−1)

−1giqi ∈ PwiP .
This latter equals q−1

i−1(g
−1
i−1giqi ) ∈ q−1

i−1PwiP ⊆ QwiP = PwiP.

Given the commutative diagram (4.8), we have that the map a is surjective as well, which
yields the desired equality (i).

In order to prove the statement (ii) in the Q-type case, we need to prove that the image
of the top horizontal arrow is Q-invariant. This follows immediately once we note that the
source of the arrow is Q-invariant for the left-multiplication diagonal action on (G/P)r and
that the r -th projection map onto G/P is Q-invariant.

In order to prove the statement (ii) in the Q-maximal case, we need to show that the
domain of a is the full pre-image under G/P → G/Q of the target of a. For simplicity, set
w� := w1 �P · · ·�P wr and setw′′

� := w′′
1 �Q · · ·�Q w′′

r . Let x = gQ ∈ XQ(w′′
� ). By Remark

4.2.4,we there is (g1Q, . . . , gr−1Q, gQ) ∈ XQ(w′′• ).By the surjectivity ofa• observed above
(Q-maximal implies Q-type), there are qi ∈ Q such that (g1q1P, . . . , gr−1qr−1P, gqrP) ∈
XP (w•) maps to (g1Q, . . . , gr−1Q, gQ). Since we are assuming Q-maximality, i.e. that
PwiP = QwiQ for every 1 ≤ i ≤ r , we see that for every q ∈ Q, we have that
(g1q1qP, . . . , gr−1qr−1qP, gqrqP) ∈ XP (w•). As q varies in Q, gqrqP traces the full
pre-image of gQ under G/P → G/Q. ��
Remark 4.2.7 The inequality (4.6), Lemma 4.2.5 and Proposition 4.2.6 also follow immedi-
ately from the comparison with the standard Demazure product in 4.3.

4.3 Comparison of geometric and standard Demazure products

Inwhat follows, we shall use, sometimeswithoutmention, a standard lemma about the Bruhat
order (see e.g. [28, Prop. 5.9]).

Lemma 4.3.1 Let (W, S) be a Coxeter group and x, y ∈ W and s ∈ S. Then x ≤ y implies
x ≤ ys or xs ≤ ys (or both).
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In this subsection we will explain how the geometric Demazure product is expressed in
terms of the usual Demazure product (indeed wewill show they are basically the same thing).
Recall that the usual Demazure product is defined on any quasi-Coxeter system (W,S). For
w1, . . . , wr ∈ W , we will denote this product by w1 ∗ · · · ∗ wr ∈ W . Its precise definition
can be given neatly using the 0-Hecke algebra, as follows. Associated to (W,S) we have
the (affine) Hecke algebra H = H(W,S) which is an associative Z[v, v−1]-algebra with
generators Tw , w ∈ W , and relations

Tw1Tw2 = Tw1w2 , if �(w1w2) = �(w1) + �(w2)

T 2
s = (v2 − 1)Ts + v2T1, if s ∈ S.

The 0-Hecke algebra H0 is defined by taking the Z[v]-algebra generated by the symbols
Tw, w ∈ W , subject to the same relations as above, and then specializing v = 0.

We define the Demazure product x ∗ y ∈ W for x, y ∈ W as follows: set T ′
x = (−1)�(x)Tx

as elements in H0, and note that in that algebra we have that

T ′
x T

′
y = T ′

x∗y
for a certain element x ∗ y ∈ W (see Remark 4.3.2 below). Clearly (W, ∗) is a monoid (since
H0 is associative). It follows from the definitions that for w ∈ W and s ∈ S, we have

w ∗ s = max(w,ws), (4.9)

where the maximum is taken relative to the Bruhat order on W .

Remark 4.3.2 Sometimes (4.9) is taken as the definition of the Demazure product w ∗ s, and
then one has the challenge of showing this can be extended uniquely to a monoid product
W × W → W . With the 0-Hecke algebra definition, this challenge is simply avoided, and
the only exercise one does is to verify that the element T ′

x T
′
y ∈ H0 is supported on a single

element, which we define to be x ∗ y. One does that simple exercise using induction on the
length of y.

In considering XP (w•), we are free to represent each element wi ∈ PWP by any lift in
W . We shall use the same symbol wi to denote both an element inW and its image in PWP .

Recall PWP denotes the set of elementsw ∈ W such thatw is the uniquemaximal length
element inWPwWP . For w• ∈ (PWP )r , note that (G/B)r → (G/P)r induces a surjective
morphism

XB(w•) � XP (w•). (4.10)

Proposition 4.3.3 Suppose that wi ∈ PWP for all i = 1, . . . , r . Then the geometric
Demazure productw� = w1�· · ·�wr is the image of theDemazure productw∗ = w1∗· · ·∗wr

under the natural quotient map W → PWP .

Proof Combining Lemma 4.3.4 below with (4.10), we easily see that it is enough to prove
the proposition in the case P = B. Indeed, the lemma implies w∗ ∈ PWP , and then using
XB(w∗) � XP (w∗) (cf. (4.10)) we would get a commutative diagram

XB(w•) XB(w∗)

XP (w•) XP (w∗)

whose top arrow is surjective by the P = B case of the proposition. Actually, a priori we do
not know the bottom arrow actually exists. Instead we only know we have a diagram
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XB(w•) XB(w∗)

XP (w•) G/P.

But the left arrow of this diagram is surjective and the right arrow has image XP (w∗), by
(4.10). So the image of the bottom arrow is XP (w∗). It follows that the previous diagram
exists, and that XP (w•) → XP (w∗) is surjective.

So, let us prove the proposition in the case P = B; note there is no longer any hypothesis
on the elements wi ∈ W . Write reduced expressions wi = si1 · · · siki for si j ∈ S, for each i .
Clearly

w1 ∗ w2 ∗ · · · ∗ wr = (s11 ∗ · · · ∗ s1k1) ∗ (s21 ∗ · · · ∗ s2k2) ∗ · · · ∗ (sr1 ∗ · · · ∗ srkr ). (4.11)

Let s•• = (s11, . . . , srkr ). There is a commutative diagram

XB(s••) XB(w•)

G/B
where the horizontal arrow forgets the elements in the tuple except those indexed by iki .
Therefore, by (4.11), it is enough to replace s•• with an arbitrary sequence s• = (s1, . . . , sk),
set s∗ = s1 ∗ · · · ∗ sk , and show that the image of the morphism

pk : XB(s•) −→ G/B
(B1, . . . ,Bk) �−→ Bk

is precisely XB(s∗). We will prove this by induction on k. Let s′• = (s1, . . . , sk−1) and
s′∗ = s1 ∗ · · · ∗ sk−1. By induction, the image of

pk−1 : XB(s′•) −→ G/B
(B1, . . . ,Bk−1) �−→ Bk−1

is precisely XB(s′∗).
First we claim the image of pk is contained in XB(s∗). Suppose (B1, . . . ,Bk−1,Bk) ∈

XB(s•). By induction we have

B ≤s′∗–– Bk−1
≤sk–– Bk .

If Bk = Bk−1, then Bk ∈ XB(s′∗) ⊆ XB(s∗), the inclusion holding since

s∗ = max(s′∗, s′∗sk). (4.12)

If Bk �= Bk−1, then B v––Bk−1
sk––Bk for some v ≤ s′∗. Thus B u––Bk for u ∈ {v, vsk}. Note

we are implicitly using the BN-pair relations (3.36) here.) On the other hand, v ≤ s′∗ implies
vsk ≤ s′∗ or vsk ≤ s′∗sk (Lemma 4.3.1), so by (4.12), we have both v ≤ s∗ and vsk ≤ s∗.
This implies that Bk ∈ XB(s∗).

Conversely, assume Bk ∈ XB(s∗); we need to show that Bk ∈ Im(pk). We have B v––Bk

for some v ≤ s∗.
If v ≤ s′∗, then, by induction, Bk =: Bk−1 = pk−1(B1, . . . ,Bk−1) for some

(B1, . . . ,Bk−1) ∈ XB(s′•). But then Bk = pk(B1, . . . ,Bk−1,Bk−1) ∈ pk(XB(s•)).
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If v � s′∗, then vsk ≤ s′∗ and vsk < v. Then there exists Bk−1 ∈ YB(vsk) ⊂ XB(s′∗) with
Bk−1

sk––Bk . By induction Bk−1 = pk−1(B1, . . . ,Bk−1) for some (B1, . . . ,Bk−1) ∈ XB(s′•)
and we see Bk = pk(B1, . . . ,Bk−1,Bk) ∈ pk(XB(s•)). ��

We conclude this subsection with the following lemma, a special case of which was used
in the proposition above. Let PW (resp. WP ) be the set of w ∈ W which are the unique
maximal elements in their cosets WPw (resp. wWP ). It is a standard fact that WP = {w ∈
W | ws < w, ∀s ∈ S∩WP }, and similarly for QW and QWP . ThusQWP = QW∩WP .
The reader should compare the statement below with Lemma 4.2.5 and Proposition 4.2.6.

Lemma 4.3.4 Let Q and P be parahoric subgroups, with no relation to each other. If w1 ∈
QW , and w2 ∈ WP , then w1 ∗ w2 ∈ QWP . In particular, the Demazure product defines
an associative product PWP × PWP → PWP .

Proof Let s ∈ WP be a simple reflection. It is enough to prove that (w1 ∗w2)s < (w1 ∗w2)

(the same argument will also give us s(w1 ∗ w2) < (w1 ∗ w2) when s ∈ WQ). Recall that
x ∗ s = max(x, xs). Using that ∗ is associative, we compute

(w1 ∗ w2) ∗ s = w1 ∗ (w2 ∗ s)

= w1 ∗ w2.

We are using w2s < w2 to justify w2 ∗ s = w2. But then we see

(w1 ∗ w2) = max((w1 ∗ w2), (w1 ∗ w2)s),

and we are done. ��
4.4 Connectedness of fibers of convolution morphisms

Before proving the connectedness, we need a few definitions and lemmas. Let f : X � Y
be a finite surjective morphism between integral varieties over a field of characteristic p.

Definition 4.4.1 We say f is separable if the field extension K (X)/K (Y ) is separable. We
say f is purely inseparable (or radicial) if f is injective on topological spaces, and if for
every x ∈ X the field extension k(x)/k( f (x)) is purely inseparable.

Radicial morphisms are defined in [19, Def. 3.5.4]; we have adopted the equivalent re-
formulation given by [19, Prop. 3.5.8]. A radicial morphism is universally injective by [19,
Rem.3.5.11].Recall that amorphism is a universal homeomorphism if andonly if it is integral,
surjective and radicial; see [21, Prop. 2.4.4]. Sincefinitemorphisms are automatically integral,
we see that a finite, surjective and radicial morphism is a universal homeomorphism.

The following lemma is trivial in characteristic zero, for then everymorphism is separable.

Lemma 4.4.2 Lef f : X � Y be a finite surjective morphism between integral varieties over

a field of characteristic p. Then f factors as X
i→ Y ′ s→ Y , where i, s are finite surjective,

i is radicial (hence a universal homeomorphism), and s is separable. Moreover, generically
over the target, s is étale.

Proof First, assume Y is affine. We write Y = Spec(A) for an integral domain A. As f is
finite, X = Spec(B) where B is an A-finite integral domain.

Let K (A) ⊆ K (B) be the inclusion of fraction fields of A, B. Let Ks be the maximal
separable subextension, and let As be the integral closure of A in Ks . Define A′ := As ∩ B.
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We have A ⊆ A′ ⊆ B, and the map f factors as the composition of i : Spec(B) → Spec(A′)
and s : Spec(A′) � Spec(A). Note that as B is A-finite and A is Noetherian, A′ is also
A-finite.

Claim i is radicial, and s is separable.

First, we prove that K (A′) = Ks , which will prove the morphism s is separable, since
Ks/K (A) is separable. It is easy to see that K (As) = Ks , using the fact that As is the
integral closure of A in Ks . Let b ∈ B be a nonzero element chosen so that the localization
Bb is normal. The element b satisfies a minimal monic polynomial with coefficients in A;
let a ∈ A be its constant term. Thus Ba is normal. Now As

a (resp. Ba) is the integral closure
of Aa in Ks (resp.K (B)), so that Aa ⊆ As

a ⊆ Ba . Hence A′
a = As

a ∩ Ba = As
a , which

implies K (A′) = Ks . We have used here that taking finite intersections and integral closures
commutes with localization.

Next, we prove that i is radicial. Since K (B)/Ks is a finite, purely inseparable extension
of characteristic p fields, there is a positive power pn such that bpn ∈ Ks for all b ∈ K (B).
Therefore bpn ∈ A′ for all b ∈ B. Now let x = P, Q ∈ Spec(B) lie over i(x) = p′ ∈
Spec(A′). We have b ∈ P ⇔ bpn ∈ p′ ⇔ b ∈ Q, which shows i is injective. The extension
k(x) ⊃ k(i(x)) is the extension Frac(B/P) ⊃ Frac(A′/p′). We have bpn ∈ A′/p′ for every
b ∈ B/P , and this shows that k(x)/k(i(x)) is purely inseparable, and the claim is proved.

Now, we turn to the generic étaleness of s. Shrinking the target of s, we may assume s
is flat (cf. e.g. [18, Cor. 10.85]). The A′-module �A′/A is finitely generated as an A-module,
and �A′/A ⊗A K (A) = �K (A′)/K (A) = 0, the last equality holding since K (A′)/K (A) is
finite separable. Thus there is a non-zero a ∈ A such that the localization (�A′/A)a = 0.
Therefore �A′

a/Aa = 0, and over the complement of the divisor a = 0, we see that s is étale.
The lemma is proved in the case when Y is affine.

To prove the general case, we need to show that the construction (A → B) � (A →
A′ → B) “glues;” for this it is enough to prove it is compatiblewith restriction to smaller open
affine subsets Spec(AU ) ⊂ Spec(A). Using the corresponding homomorphism A → AU ,
we obtain a homomorphism φ : A′ ⊗A AU → (AU )′, and we need to show this is an
isomorphism. By covering Spec(AU )with principal open subsets of Spec(A)we are reduced
to proving that φ is an isomorphism in the special case AU = Aa, with a ∈ A \ {0}. But then
φ is just the isomorphism A′ ⊗A Aa

∼→ (A′)a = (Aa)
′. ��

Remark 4.4.3 If in Lemma 4.4.2 we assume that X is normal, then there is a unique radi-
cial/separable factorization f : X → Y ′ → Y with the requirement that Y ′ is normal.

The following proposition establishes a quite general principle of connectedness. As
pointed out to us by Jason Starr, the proposition also admits a proof via the use of [20,
Cor. 4.3.7]. We are also very grateful to Jason Starr for providing us with an alternative proof
of Lemma 4.4.2 (omitted).

Proposition 4.4.4 Let p : X → Y be a surjective proper morphism of integral varieties
over an algebraically closed field. Assume that Y is normal. If p−1(y) is connected for all
points y in a dense open subset V ⊆ Y , then p−1(y) is connected for all y ∈ Y . In particular,
if p : p−1(V ) → V is isomorphic to pr1 : V × p−1(y) → V for all y ∈ V , then p−1(y) is
connected for all y ∈ Y .

Proof First assume that the fibers p−1(y) for y ∈ V are connected. By the Stein factorization

theorem, we may factor p as the composition X
pc→ X̂

p f→ Y , where p f , pc are proper and
surjective, the fibers of pc are connected, and p f is finite. Since pc,∗OX = OX̂ , the scheme
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X̂ is an integral variety over k̄. Let X̂
i→ Y ′ s→ Y be the factorization p f = s ◦ i from

Lemma 4.4.2, so that K (Y ′)/K (Y ) is the maximal separable subextension of K (X̂)/K (Y ).
The surjective morphism s : Y ′ → Y is finite separable, hence finite étale generically

over the target (cf. end of Lemma 4.4.2), and it follows that generically its fibers have some
finite cardinality n := [K (Y ′) :K (Y )]. Our assumption on the fibers of p forces n = 1. Since
Y is normal, the finite birational morphism s : Y ′ → Y must be an isomorphism, and so the
fibers of s are singletons. Therefore the fibers of p = pc ◦ i ◦ s are connected as this holds
for pc ◦ i .

For the second assertion, note that p−1(V ) is irreducible since X is, and so the triviality
assumption forces p−1(y) to be irreducible for y ∈ V . Then the first part implies that all
fibers of p are connected. ��
Corollary 4.4.5 The fibers of the convolution morphism p : XP (w•) → XP (w�) are geo-
metrically connected.

We remark that a somewhat stronger result is proved cohomologically in Theorem 2.2.2,
but here we give a direct geometric proof.

Proof We pass to the fixed algebraic closure of our finite field; for simplicity, we do not alter
the notation. By Corollary 4.1.4, p is proper, surjective, and the source and target of p are
normal and integral. Hence by Proposition 4.4.4, it is sufficient to show that p is trivial over
an open dense subset of YP (w�), in the sense of the second assertion of that proposition. We
may representwi by an element in PWP , so thatw� is represented by w∗ ∈ PWP (Lemma
4.3.4), and so YP (w�) contains Uw∗P/P as an open subset. We have

Uw∗P/P = (U ∩ w∗UP )w∗P/P ∼= U ∩ w∗UP ,

by (3.29). Since p is B-equivariant, it is clearly trivial over this subset in the sense of Propo-
sition 4.4.4. More precisely, an element P ∈ Uw∗P/P can be written in the form

P = uw∗P/P
for a unique element u ∈ U ∩ w∗UP . We can then define an isomorphism

p−1(Uw∗P/P) →̃ p−1(w∗P/P) × Uw∗P/P
by sending (P1, . . . , Pr−1, uw∗P/P) to ( u−1P1, . . . , u−1Pr−1, w∗P/P) × uw∗P/P . ��
4.5 Generalized convolution morphisms p : XP (w•) → XQ(w′′

I,•)

Let 1 ≤ r ′ ≤ r and let 1 ≤ i1 < . . . < im = r ′ and denote these data by I . Letw• ∈ (PWP )r ,
set i0 := 0 and define

wI,k := wik−1+1 �P · · · �P wik , w′′
I,k := w′′

ik−1+1 �Q · · · �Q w′′
ik . (4.13)

Definition 4.5.1 We define the convolution morphism p : XP (w•) → XQ(wI,•) associated
with w• and with I by setting

(g1P, . . . , grP) �→ (gi1Q, . . . , gimQ). (4.14)

The convolution morphism (4.14) factors through the natural convolution morphism
XP (w1, . . . , wr ) → XP (w1, . . . , wr ′). The composition of convolution morphisms is a
convolution morphism. Generalized convolution morphisms are typically not surjective.
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We have the commutative diagram of convolution morphisms with surjective horizontal
arrows

XP (w•) XP (wI,•)

XQ(w′′• ) XQ(w′′
I,•).

(4.15)

Proposition 4.5.2 Let p : XP (w•) → XQ(w′′
I,•) be a convolution morphism. Assume that

the wi are of Q-type, i.e., X P (wi ) = QXP (wi ). Then, locally over XQ(w′′
I,•), the map

p is isomorphic to the product of the maps pk : XP (wik−1+1, . . . wik ) → XQ(w′′
I,k) and

c : XP (wr ′+1, . . . wr ) → {pt}.
Proof The conclusion can phrased by stating the existence of a cartesian diagram

XP (w•)

p

XP (w•) Ã

pÃ

open ∏m
k=1 XP (wik−1+1, . . . wik )Ak × XP (wr ′+1, . . . wr )

pA :=∏
pk Ak×c

∼

XQ(w′′
I,•) Ã

open
A := ∏m

k=1 Ak × {pt},∼

(4.16)
where, for each k, the open subset Ak ⊆ XQ(w′′

I,k) is the analogue of the Aγ appearing in the
proof of Lemma 4.1.2 (we are nowdropping γ from the notation), andwhere the isomorphism
A ∼= Ã is given explicitly by the assignment {γi uiQ}ri=1 �→ {∏i

j=1 γ j u jQ}ri=1.

Our task is to provide the isomorphism on the top row of (4.16). The assignment is as
follows: ({(

Tik−1+1, . . . , Tik = γkukqkP
)}m

k=1 ,
(
Tr ′+1, . . . , Tr

))
(4.17)

maps to

⎛

⎝

⎧
⎨

⎩

k−1∏

j=1

γ j u j
(
Tik−1+1, . . . , Tik = γkukqkP

)
⎫
⎬

⎭

m

k=1

,

⎛

⎝
m∏

j=1

γ j u j

⎞

⎠ qm
(
Tr ′+1, . . . , Tr

)
⎞

⎠

which does the job: the verification of this can be done by the reader with the aid of the
following list of items to be considered and/or verified

(1) We use the local isomorphisms

{γ j ukQ}mk=1 �→
⎧
⎨

⎩

k∏

j=1

γ j u jQ
⎫
⎬

⎭

m

k=1

(4.18)

between the targets of the maps
∏

pk and p.
(2) The assignment (4.17) should agree with the local isomorphisms (4.18).
(3) The Q-type assumption on the wi ensures, via Proposition 4.2.6, that the maps

XP (wI,k) → XQ(w′′
I,k) are surjective.

(4) Given γi uiQ, the expression γkukqkP , with variable q , describes a point in the fiber of
G/P → G/Q over γi uiQ that, in addition lies in XP (wI,k) (this constrains qk), i.e. a
point in the fiber over γi uiQ of the surjective map XP (wI,k) → XQ(w′′

I,k). Note that
qk has ambiguity qk pk .

123

Author's personal copy



156 M. A. de Cataldo et al.

(5) Once we have Tik as above, we use the surjectivity of the convolution morphisms of type
XP (w•) → XP (w�P ) and Remark 4.2.4 to infer that we indeed can complete each Tik
with variables Tik−1+1, . . . , Tik with the correct set of consecutive relative position, to the
left as indicated in the first line of (4.17). Of course, by construction, each Tik �→ γkukQ.

(6) The assignment (4.17) is well-defined with values in (G/P)r : in fact, the ambiguities
qk pk do not effect the assignment.

(7) The assignment (4.17) is well-definedwith values into XP (w•) ⊆ (G/P)r : this is where
we use that thewik+1 are of Q-type for 2 ≤ k ≤ m−1; in fact, we need to verify that, if
we write Pik+1 = gP , so that g ∈ Pwik+1P , then we also have that q−1

k g ∈ Pwik+1P ,
and this follows from the Q-type assumption on wik+1.

Note that if we replace the expression
∏k−1

j=1 γ j u j in (4.17) with
∏k−1

j=1 γ j u j q j , or even

with (
∏k−1

j=1 γ j u j )qk−1, then what is above works, but what follows does not.
(8) It is immediate to verify that p maps the expression target of (4.17) to the lhs of (4.18).
(9) The assignment (4.17), defined over our suitable open subsets, has an evident inverse.

��
Remark 4.5.3 As the proof of Proposition 4.5.2 shows, if we assume that r = r ′ = m, i.e.
that p : XP (w•) → XQ(w′′• ) and that the wi are Q-maximal, then the map p is a Zariski
locally trivial bundle with smooth fiber (Q/P)r , in fact the elements qk in part (4) of the
proof of Proposition 4.5.2 are no longer constrained.

4.6 Relation of convolution morphisms to convolutions of perverse sheaves

The twisted products are close in spirit to ordinary product varieties (see Lemma 4.1.2). A
more standard notation for twisted products is XP (w1)×̃ · · · ×̃XP (wr ); we opted for lighter
notation. The remark that follows clarifies the relation between the convolutionmorphism p :
XP (w•) → XP (w�) and the convolution of equivariant shifted-perverse sheaves ICXP (w1)∗
· · · ∗ ICXP (w1).

Remark 4.6.1 (Lusztig’s convolution product [32]) Let PP (G/P) ⊂ Db
c (G/P, Q̄�) be the

full subcategory consisting of P-equivariant perverse sheaves on the (ind-)scheme G/P .
Lusztig has defined a convolution operation

∗ : PP (G/P) × PP (G/P) −→ Db
c (G/P, Q̄�)

as follows. There is a twisted product space G ×P G/P (the quotient of the product with
respect to the anti-diagonal action of P) which fits into a diagram of (ind-)schemes

G/P × G/P G × G/Pp1 p2 G ×P G/P m G/P.

The morphisms p1 and p2 are the quotient morphisms; both are locally trivial with typical
fiberP . Themapm is the “multiplication”morphism. GivenF1,F2 ∈ PP (G/P), there exists
on the twisted product a unique perverse (up to cohomological shift) sheafF1�̃F2, such that
there is an isomorphism p∗1(F1 � F2) ∼= p∗2(F1�̃F2). Lusztig then defines

F1 ∗ F2 := m!
(F1�̃F2

) ∈ Db
c (G/P, Q̄�).

It is a well-known fact that there is a natural identification

p∗ICXP (w•) = ICXP (w1) ∗ · · · ∗ ICXP (wr ). (4.19)
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Of course, the right hand side is an abuse of notation since our intersection complexes are
only perverse up-to-shift, but the meaning should be clear.

5 Proofs of Theorems 2.1.1 and 2.1.2 and a semisimplicity question

5.1 The decomposition theorem over a finite field

The following proposition may be well-known to experts. We could not find an adequate
explicit reference in the literature. A stronger result, also possibly well-known, holds and we
refer to [10, Prop. 2.1] for this stronger statement and its proof, which follows from some
results in [3].

Proposition 5.1.1 Let f : X → Y be a proper map of varieties over the finite field k, let P be
a pure perverse sheaf of weightw on X. Then the direct image complex f∗P ∈ Db

m(Y, Q�) is
pure of weight w and splits into the direct sum of terms of the form ICZ (L)[i], where i ∈ Z,

Z ⊆ Y is a closed integral subvariety of Y , and L is lisse, pure and indecomposable on a
suitable Zariski dense smooth subvariety Zo ⊆ Z.

Example 5.1.2 (Jordan–block sheaves) LetJn be the lisse rank n-sheaf on Spec(k)with stalk
Q

n
� and Frobenius acting by means of the unipotent rank n Jordan block [3, p. 138–139]. The

lisse sheaf Jn is pure of weight zero, indecomposable, and when n > 1, neither semisimple
nor Frobenius semisimple. The same is true after pull-back to a smooth irreducible variety.
Of course, Jn is constant, hence semisimple, on Spec(k).

Fact 5.1.3 (Indecomposables) The indecomposable pure perverse sheaves on a variety X
are of the form S ⊗ Jn for some n and for some simple pure perverse sheaf S; see [3,
Prop.5.3.9].

Remark 5.1.4 (Simple, yet not Frobenius semisimple?) We are not aware of an example of a
simple lisse sheaf that is not Frobenius semisimple. According to general expectations related
to the Tate conjectures over finite fields, there should be no such sheaf.

5.2 Proof of the semisimplicity criterion theorem 2.1.1

We need the following elementary

Lemma 5.2.1 Suppose T1 : V1 → V1 and T2 : V2 → V2 are linear automorphisms of finite
dimensional vector spaces over an algebraically closed field. Suppose T1⊗T2 : V1⊗k V2 →
V1 ⊗k V2 is semisimple. Then both T1 and T2 are semisimple.

Proof We may write in a unique way Ti = SiUi , where SiUi = Ui Si and Si is semisimple
and Ui is unipotent. Then T1 ⊗ T2 = (S1 ⊗ S2)(U1 ⊗ U2) = (U1 ⊗ U2)(S1 ⊗ S2), where
S1⊗S2 is semisimple andU1⊗U2 is unipotent (for the latter, observe thatU1⊗U2−id⊗id =
(U1 − id) ⊗ U2 + id ⊗ (U2 − id) is nilpotent). Thus U1 ⊗ U2 = id ⊗ id, which implies
Ui = id and hence Ti = Si for i = 1, 2. ��
Proof of the semisimiplicity criterion for direct images Theorem 2.1.1.

One direction is trivial from the definitions, ifF ∈ Db
m(Y, Q�) and f∗F is Frobenius semisim-

ple for every closed point y in Y , then, by proper base change, we have that H∗( f −1(y),F)

is Frobenius semisimple for every closed point y in Y .
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We argue the converse as follows. By the definition of semisimple complex, it is enough to
prove the assertion for a simple—hence pure—perverse sheafF . According to the decompo-
sition theorem over a finite field Proposition 5.1.1, the direct image complex f∗F splits into a
direct sum of cohomologically-shifted terms of the form ICZ (R)where Z is a closed integral
subvariety of Y and R is a pure lisse sheaf on a suitable Zariski-dense open subset Zo ⊆ Z .
Without loss of generality, we may assume that the pure lisse sheavesR are indecomposable.

By applying Fact 5.1.3, we obtain that each lisseR has the form L⊗Jh , for some h ≥ 1
and some lisse simple L. The desired conclusion follows if we show that in each direct
summand above, we must have that the only possible value for h is h = 1.
Fix such a summand. Pick any point y ∈ Zo(k). By proper base change, the semisimplicity
assumption ensures that the graded stalksH∗( f∗F)y are semisimple graded Galois modules.
It is then clear that Ly ⊗Jh , being a graded Galois module which is a graded subquotient of
the graded semisimple Galois moduleH∗( f∗F)y , is also semisimple. We conclude by using
Lemma 5.2.1. ��
5.3 Proof that the intersection complex splits off Theorem 2.1.2

Recall that one can define the intersection complex ICX ∈ Db
m(X, Q�) for any variety over

the finite field k as follows (see [9, §4.6]): since nilpotents are invisible for the étale topology,
we may assume that X is reduced; let μ : ∐i Xi → X be the natural finite map from the
disjoint union of the irreducible components of X; define ICX := μ∗

(⊕iICXi

)
. Note that

ICX is then pure of weight zero and semisimple on X .

Proof of Theorem 2.1.2 We may replace Y with f (X) and assume that f is surjective. We
may work with irreducible components and assume that X and Y are integral.
In view of Theorem 5.1.1, we have an isomorphism f∗ICX ∼= ⊕

a,i ICZa (Rai )[−i], where
the Za range among a finite set of closed integral subvarieties of Y , i ∈ Z≥0 and the Rai are
lisse on suitable, smooth, open and dense subvarieties Zo

a ⊆ Za . By removing from Y all of
the closed subvarieties Za �= Y , and possibly by further shrinking Y , we may assume that
Y is smooth and that the direct sum decomposition takes the form f∗ICX ∼= ⊕i≥0Ri [−i],
where each Ri := Ri f∗ICX is lisse on Y .

Claim After having shrunk Y further, if necessary, we have that Q�Y is a direct summand of
R0 := R0 f∗ICX .

Note that the claim implies immediately the desired conclusion: if the restriction of
( f∗ICX )|U over an open subset U ⊆ Y admits a direct summand, then the intermediate
extension of such summand to Y is a direct summand of f∗ICX . ��
Proof of the Claim Let f = h ◦ g : X → Z → Y be the Stein factorization of f. In
particular, g and h are proper surjective, the fibers of g are geometrically connected and
h is finite. By functoriality, we have that R0 := R0 f∗ICX = R0h∗R0g∗ICX . Without
loss of generality, we may assume that X is normal: take the normalization ν : X̂ →
X; we have ν∗IC X̂ = ICX ; then ( f ◦ ν)∗IC X̂ = f∗ICX . Since now X is normal, we
have that the natural map Q�X → ICX induces an isomorphism Q�X

∼= H0(ICX ). In
particular, we get a distinguished triangle Q�X → ICX → τ≥1ICX → . We apply Rg∗
and obtain the distinguished triangle Rg∗Q�X → Rg∗ICX → Rg∗τ≥1ICX →. Since g∗ is
left-exact for the standard t-structure, we see that R0g∗(τ≥1ICX ) = 0. We thus get natural
isomorphism Q�Z

∼= R0g∗Q�X
∼= R0g∗ICX , where the first one stems from the fact that

g has geometrically connected fibers. It remains to show that R0h∗Q�Z admits Q�Y as a
direct summand. By shrinking Y if necessary, we may assume that h : Z → Y is finite
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surjective between smooth varieties. Using Lemma 4.4.2, we factorize h = s ◦ i , where s is
separable and i is purely inseparable. Since i is a universal homeomorphism, we have that
i∗ is isomorphic to the identity.

It remains to show that, possibly after shrinking Y further, R0s∗Q�Z admitsQ�Y as a direct
summand. After shrinking Y , if necessary, we may assume by Lemma 4.4.2 that s is finite
and étale. It follows that s!Q�Y

∼= Q�Z . By consideration of the natural adjunction maps, we

thus get natural maps R0s∗Q�Z = R0s!Q�Y
a→ Q�Y

b→ R0s∗Q�Z , with a ◦ b = (deg s) Id
(see [35, Lem.V.1.12]). The desired splitting follows. The Claim is thus proved, and so is the
theorem. ��
5.4 A semisimplicity conjecture

Given a complete variety X over the finite field k, one may conjecture that the graded Galois
module H∗(X, Q�) is semisimple, i.e., that there should be no non-trivial Jordan factors
under the action of the Frobenius automorphism. We have the following

Conjecture 5.4.1 Let f : X → Y be a proper map of varieties over the finite field k. For
every closed point y in Y, the graded Galois modules H∗( f −1(y), ICX ) are semisimple. In
particular, in view of Theorem 2.1.1, the direct image f∗ICX is semisimple and Frobenius
semisimple.

Let us remark that in view of de Jong’s theory of alterations [12], Conjecture 5.4.1,
concerning intersection cohomology, follows from the semisimplicity conjecture in ordinary
Q�-adic cohomology stated at the very beginning of this subsection. This implication follows
immediately by combining the proper base change theorem with the splitting-off of the
intersection complex Theorem 2.1.2 (N.B. given that we are working with generically finite
morphisms, in place of Theorem 2.1.2 we may use the more elementary [17, Lemma 10.7]),
for then we can take the composition f1 := f ◦ a : X1 → X → Y , where a is an alteration,

and use the conjectural semisimplicity of the graded Galois module H∗( f −1
1 (y), Q�) to

deduce it for its (non-canonical) Galois module direct summand H∗( f −1
1 (y), ICX ).

One may ask the even more general

Questions 5.4.2 Let F be a simple mixed (hence pure) perverse sheaf on a variety X over a
finite field k. Is F Frobenius semisimple, i.e. is the action of Frobenius on its stalks semisim-
ple? Recall that this does not seem to be known even in the case of a simple lisse sheaf on
X smooth and geometrically connected, nor in the case of the intersection complex ICX .
Let f : X → Y be a proper morphism of k-varieties. Are the graded Galois modules

H∗( f −1
1 (y),F) semisimple for every y ∈ Y (k), so that, in view of Theorem 2.1.1, the direct

image f∗F is semisimple and Frobenius semisimple?

6 Proofs of Theorems 2.4.1, 2.2.1 and 2.2.2

6.1 Proof of the surjectivity for fibers criterion Theorem 2.4.1

In this section,we proveTheorem2.4.1,which is the key to provingTheorems 2.2.1, 2.2.2.We
first remind the reader of the “retraction” Lemma 6.1.1. We then establish the local product
structure Lemma 6.1.3.We are unaware of a reference for these local product structure results
in the generality we need them here. We introduce a certain contracting Gm-action on (6.5).
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With (6.5) and the contracting action we then conclude the proof of Theorem 2.4.1 by means
of the retraction Lemma 6.1.1 followed by weight considerations. This kind of argument has
already appeared in the context of proper toric fibrations [10] and it can be directly fed into
to the context of this paper, once we have the local product structure Lemma 6.1.3.

Lemma 6.1.1 (Retraction lemma) Let S be a k-variety endowed with a Gm-action that
“contracts” it to a k-rational point so ∈ S, i.e. the action Gm × S → S extends to a map
h : A1 × S → S such that

h−1(so) = (A1 × {so})
⋃

({0} × S).

Let E ∈ Db
m(S, Q�) be Gm-equivariant. Then the natural restriction map of graded Galois

modules H∗(S, E) → H∗(E)s is an isomorphism.

Proof This lemma is proved in [14, Lemma 6.5], in the casewhen E = ICS is the intersection
complex (automaticallyGm-equivariant); this seems to be rooted in [29, Lemma 4.5.(a)]. The
proof of the above simple generalization to the direct image under a proper map of a weakly
equivariant Gm-equivariant complex is contained in the proof of [11, Lemma 4.2]. We also
draw the reader’s attention to [41, Cor. 1], which is probably the original reference for this
result. ��
Remark 6.1.2 If Gm acts linearly on An with positive weights, S ⊆ An is a Gm-invariant
closed subscheme and E isGm-equivariant on S, then (S, E) satisfy the hypotheses of Lemma
6.1.1. If, in addition, f : T → S is a proper Gm-equivariant map and F is Gm-equivariant
on T , then Lemma 6.1.1 combined with proper base change yields natural isomorphisms of

graded Galois modules H∗(T ,F) → H∗( f −1
(so),F), where so is the origin in An .

Consider the “dilation” action c of Gm on k[[t]] which sends t to at for a ∈ k×. We can
define the same kind of dilation action on T (k[[t]]), T (k((t))), B, P , G, and G/P , thus on the
closures of B and of P-orbits.

Recall that we are in the context of Theorem 2.4.1: X := XBP (w) ⊆ G/P is the closure
of a B-orbit (special case: the closure of a P-orbit); we are fixing x ∈ X (k). By passing to a
finite extension of the finite ground field k, if necessary, and by using the B-action, we may
assume that the point x is a T (k)-fixed point xv for a suitable v ≤ w ∈ BWP . This latter
parameterizes the B-orbits YBP (v) in G/P , which, in what follows, we simply denote by
Y (v).

Lemma 6.1.3 There is a commutative diagram with cartesian squares

Y (v) × g−1(Sv)
∼

1×g

g−1(Xv)

g

Z

g

Y (v) × Sv
∼

Xv X

(6.1)

where, Sv ⊆ Xv is a closed subvariety containing xv , the inclusions are open immersions
and the indicated isomorphisms are equivariant for the actions of the groups (U ∩ vUP ),
T (k), c (actually, the given cZ on Z ). Moreover, there is a Gm-action on Sv that contracts it
to xv and that lifts to g−1(Sv).

Proof Denote vUP := vUPv−1. In Sect. 3.9, we stated the product decompositions

vUP = (U ∩ vUP )(U ∩ vUP ). (6.2)
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Let vCP = vUP · xv
∼= vUP be the open big cell in G/P at xv := vP/P (cf. (3.28)).

According to (6.2) it admits a product decomposition

vCP ∼= Y (v) × Cv∞, (6.3)

where the Y (v) factor can be identified, thanks to (3.29), as

Y (v) = (U ∩ vUP ) · xv
∼= U ∩ vUP ,

and the second factor, which is not of finite type, is defined by setting

vCP ⊃ Cv∞ := (U ∩ vUP ) · xv
∼= U ∩ vUP .

The B-orbit Y (v) is a (U ∩ vUP )-torsor; also, let this latter group act trivially on Cv∞. By
(6.2), we have that (6.3) is an (U ∩ vUP )-equivariant isomorphism.

We set Xv := vCP ∩ X . Then the composition Xv → vCP → Y (v) is (U ∩ vUP )-
equivariant. Let

Sv := Cv∞ ∩ Xv = Cv∞ ∩ X.

We thus see that there is an (U ∩ vUP )-equivariant isomorphism

Xv
∼→ Y (v) × Sv.

Note that Y (v) is a finite dimensional affine space; Sv is what one calls the slice of Xv at xv

transversal to Y (v).
Let 2ρ∨ be the sum of the positive coroots (viewed as a cocharacter), let n, i be integers

with i >> n >> 0, and define a cocharacter μ = −2nρ∨. We claim that for sufficiently large
i >> n >> 0, the Gm-action on X defined using (μ, c−i ) contracts Sv to xv , where contract
means that the action extends to a morphism A1 × Sv → Sv such that the hypotheses of
Lemma 6.1.1 are satisfied with so = xv . In order to prove this, it is enough to find an affine
space Av endowed with a Gm-action and a closed embedding (Sv, xv) ↪→ (Av, 0), such that

(i) the Gm-weights on Av are > 0 (see Remark 6.1.2);
(ii) the Gm-action on Av preserves Sv and restricts to the action on Sv via (μ, c−i ).

It is enough to prove these statements over k̄, so we write k for k̄ in the rest of this argument.
Recall that U is an ind-scheme which is ind-finite type and ind-affine. We need to make

this more precise. Choose a faithful representation of G ↪→ GLN , a maximal torus TN in
GLN as well as Borel subgroups BN = TNUN and B̄N = TNŪN as in Remark 3.1.1.

We have an exact sequence of group ind-schemes

1 → L−−G → U → Ū → 1,

where L−−G is the kernel of the map G(k[t−1]) → G(k[t−1]/t−1). Using the embedding
G(k[t, t−1]) ⊂ GLN (k[t, t−1]), an element g ∈ L−−G(k) can be regarded as a matrix of
polynomials

gi j = δi j + a1i j t
−1 + a2i j t

−2 + · · · (6.4)

whose coefficients aki j satisfy certain polynomial relations which ensure that (gi j ) lies in

G(k[t−1]). Fix an integer m ≥ 0, and let L−−
m G be the set of g ∈ G(k[t−1]) such that

degt−1(gi j ) ≤ m for all i, j . Similarly define Um . The ind-scheme structure on U is given
by this increasing union of closed affine k-varieties: U = ⋃

m Um . On the other hand, Sv ⊂
(U ∩ vUP ) xv is an integral k-subvariety, and the closed subschemes Umxv ∩ Sv exhaust Sv .
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Henceforth we fixm so large that the generic point of Sv is contained in Umxv ∩ Sv ; then this
intersection coincides with Sv and hence there is a closed embedding Sv ⊂ (Um ∩ vUP )xv .

As Sv is isomorphic to a closed subscheme of Um ∩ vUP , it is enough to find a closed
embedding of Um into an affine space Av carrying a Gm-action which satisfies (i) and (ii).
Clearly L−−

m G is a closed k-subvariety of the affine space Am consisting of all matrices
(gi j ) whose entries have the form (6.4) with degt−1(gi j ) ≤ m for all i, j . The group Ū is
isomorphic as a variety to

∏
α<0Uα and eachUα is isomorphic to A1 (non-canonically). We

can therefore identify Ū with an affine space. The space Av := Am × Ū carries the diagonal
Gm-action via (μ, c−i ) (by construction, c acts trivially on Ū ).

The exact sequence above splits, so there is a canonical isomorphism of affine k-varieties

Um = L−−
m (G) · Ū ,

and hence a closed embedding Um ↪→ Av = Am × Ū , compatible with the Gm-actions
defined via (μ, c−i ). The weights of the latter on Av are clearly positive for i >> n >> 0.
Also, these actions preserve the image of (U ∩ vUP )xv ∩ X = Sv . Hence (i) and (ii) are
verified, and we have constructed the desired contracting action of Gm-action on Sv .

Finally, let us observe that the Gm-action (μ, c−i ) on X lifts to Z . Indeed, μ can be
lifted because μ has image in T (k) ⊂ B, and g is B-equivariant. By assumption, g is also
c-equivariant (c on X , cZ on Z ). It follows that the Gm-action given by (μ, c−i

Z ) acts on Z
and that g is equivariant with respect to these Gm-actions (μ, c−i

Z ) and (μ, c−i ).
Moreover, the map g : Z → X is B-equivariant, hence (U ∩ vUP )-equivariant. We thus

have the (U ∩ vUP )-equivariant isomorphism of varieties

g−1(Xv)
∼→ (U ∩ vUP ) × g−1(Cv∞ ∩ Xv)

∼→ Y (v) × g−1(Sv). (6.5)

This establishes (6.1). ��

Proof Theorem 2.4.1 Recall that, by using the B-action, we have reduced ourselves to the
case of the special k-rational points xv ∈ X := XBP (w), with v ≤ w in W/WP . We use
(6.1). Consider the following natural restriction/pull-back maps of graded Galois modules

H∗(Z , ICZ ) → H∗(g−1(Xv), ICZ )
∼→ H∗(g−1(Sv), ICZ )

∼→ H∗(g−1(xv), ICZ ),

(6.6)
where the first isomorphism is due to the Künneth formula, and the second is due to the
retraction Lemma 6.1.1. We freely use the weight argument in [10, Lemma 2.2.1], which we
summarize. First we establish purity by means of a classical argument: the second module
is mixed with weights ≥ 0, the last is mixed with weights ≤ 0, so that the second mod-
ule is pure with weight zero. Next, the first module is pure with weight zero and surjects
onto the pure weight zero part of the second, which is the whole thing (let i be the closed
embedding of the complement of g−1(Xv) in Z ; then use the exact sequence H∗(Z , ICZ ) →
H∗(g−1(Xv), ICZ ) → H∗+1(Z , ī∗ ī !ICZ ) and the fact that the r.h.s. has weights ≥ ∗ + 1).
Therefore we conclude that the composition H∗(Z , ICZ ) → H∗(g−1(xv), ICZ ) is surjec-
tive. All the assertions of the theorem, except for the last one follow at once.

If we replace Z with a dense open subset U ⊆ Z containing the fiber over any closed
point, then the weight argument above can be repeated: we no longer have an open set in the
shape of a nice product, but we can argue in the same way that the images of IH∗(Z , Q�) and
of IH∗(U , Q�) in H∗(g−1(x), ICZ ), coincide. This completes the proof of Theorem 2.4.1.

��
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6.2 Proof of Theorem 2.2.1

Lemma 6.2.1 Let X be a k-schemewhich is paved by affine spaces. The compactly supported
cohomology H∗

c (X , Q�) is a good graded Galois module. In particular, if X is proper, then
the ordinary cohomology H∗(X , Q�) is a good graded Galois module.

Proof Recall Definition 2.5.1 (affine paving). The Borel-Moore homology HBM∗ (X , Q�) :=
H−∗(X , ωX ) (ωX the dualizing complex of X ) is even and there is a natural isomorphism
given by the cycle class map

cl : A∗(X) ⊗Z Q�
∼= HBM

2∗ (X , Q�)(−∗)Frob = HBM
2∗ (X , Q�)(−∗),

see, e.g. [16, Example, 19.1.11] and [37, Section 1.1]. Thus, there is a basis of Borel-Moore
homologygivenbyTate twists of the cycle classes of the closuresCi j = Ani j ⊆ X of the affine
cells. In particular, each cl(Ci j )(ni j ) ∈ HBM

2ni j
(X , Q�) is an eigenvector of Frobenius with

eigenvalue |k|−ni j (note that, here, HBM
2k (X , Q�) is pure of weight −2k). The conclusion

follows by the Verdier duality isomorphisms of graded Galois modules HBM∗ (X , Q�)
∼=

H∗
c (X , Q�)

∨. ��
Lemma 6.2.2 (Demazure varieties are good)Let XB(s•) be aDemazure variety, i.e. a twisted
product with s• ∈ Sr a vector of simple reflections. Then we have that IH∗(XB(s•), Q�) =
H∗(XB(s•), Q�) is good and generated by algebraic cycle classes.

Proof Since, by construction, XB(s•) is an iterated P1-bundle, it is smooth of dimension r
so that we have natural isomorphims of graded Galois modules

IH∗(XB(s•), Q�)
∼= H∗(XB(s•), Q�)

∼= HBM
2r−∗(XB(s•), Q�)(−r).

As the proof of Lemma 6.2.1 shows, the middle term is good with weight zero and the r.h.s
is generated by algebraic cycle classes. In order to apply Lemma 6.2.1, we invoke the special
case of Theorem 2.5.2(3) which asserts that XB(s•) is paved by affine spaces. ��
Lemma 6.2.3 A twisted product variety is the surjective image of a convolution morphism
with domain a Demazure variety.

Proof Let XP (w•) be a twisted product variety. Let ui be the maximal representative in W
ofwi . Let si• be a reduced word for ui . The composition of surjective convolutionmorphisms
XB(s••) → XB(u•) → XP (w•) yields the desired conclusion. ��

Let us record for later use (proofs of Theorem 2.2.1 below and Theorem 2.5.2 in Sect. 7)
that the construction in the proof of Lemma 6.2.3, coupledwith Remark 4.5.3 and Proposition
4.2.6 yields the following commutative diagram (to this end, note that: by construction, we
have w• = u′′•; by the proposition, we have that u′′

� = w�; by the remark, we have the
indicated bundle structures)

XB(s••)
π

XB(u•)
p′

q

XB(u�)

q ′

XP (w•)
p

XP (w�),

(6.7)

where all maps are surjective, q, q ′ are Zariski locally trivial bundles with respective fibers
(P/B)r and (P/B). By the associativity of the Demazure product, we have that the Demazure
product of the s•• coincides with that of the u•, i.e. s� = u�.
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Proof of Theorem 2.2.1 Let XP (w•) be a twisted product variety. We need to prove that its
intersection cohomology groups IH∗(XP (w•), Q�) and its intersection complex ICXP (w•)
are good.

The first statement follows from Lemmata 6.2.2, 6.2.3 and Theorem 2.1.2. As for the
second, the twisted product variety XP (w•) is locally isomorphic to the usual product, and
ICXP (w•) is locally isomorphic to ICXP (w1) � · · · � ICXP (wr ). Therefore it is enough to
prove the case r = 1, i.e. it is enough to prove that ICXP (w) is good for every w. We use
diagram (6.7) in the case r = 1. By Theorem 2.1.2 applied to the surjective morphism q ◦π ,
it is enough to prove that (qπ)∗(Q�) is good. For any closed point x ∈ XP (w), Theorem
2.4.1 gives a surjection IH∗(XB(s•), Q�) � H∗(qπ−1(x), Q�) of graded Galois modules,
which shows that R(qπ)∗(Q�) is good by Theorem 2.1.1 and Lemma 6.2.2. (Alternatively,
in place of Theorem 2.4.1 and Lemma 6.2.2, we can use the paving results Theorem 2.5.2(2)
and Lemma 6.2.1.) ��
6.3 Proof of Theorem 2.2.2

We use freely the diagram (4.16) and the notation used the proof of Proposition 4.5.2.
Let x ∈ XQ(w′′

I,•) be a closed point. Pick Ã so that x ∈ Ã. Theorem 2.4.1 applies to each
factor of the product map pA. By the Künneth formula, it follows that the restriction map

IH∗(p−1
Ã

( Ã), Q�) → H∗(p−1(x), ICZ ) is surjective. By using the same weight argument
as in the proof of Theorem 2.4.1 (below (6.6)), we deduce that the restriction map from any
Zariski open subset U of Z containing p−1(x) is a surjection.

By taking U = Z , we see that the restriction map IH∗(Z , Q�) → H∗(p−1(x), ICZ )

is surjective. By Theorem 2.2.1, the domain of this restriction map is good, hence so is the
target.

The just-established fact that the fibers are good, coupled with the proper base change
theorem and with Theorem 2.1.1 ensures that p∗ICX is good.

Finally, since IH0(Z , Q�) is one-dimensional, and the fibers of p are non-empty, we
deduce that they are geometrically connected. ��

7 Proof of the affine paving Theorem 2.5.2

7.1 Proof of the paving fibers of Demazure maps Theorem 2.5.2.(1)

Our original proof went along the lines of [22, Prop. 3.0.2]; see our earlier arXiv posting
arXiv:1602.00645v2. Here we will give a more conceptual approach which was suggested
by an anonymous referee. The key step is the following general technique for producing affine
pavings (cf.Definition2.5.1) of fibers of morphisms using the Bialynicki-Birula decomposi-
tion [6]. In what follows k will denote any field, and “point” will mean “closed point.”

Lemma 7.1.1 Suppose a split k-torus T acts on k-varieties X and Y and let f : X → Y
be a proper T-equivariant k-morphism. Assume X is smooth and can be T-equivariantly
embedded into the projective space of a finite dimensional T-module. Suppose a k-rational
fixed point y ∈ YT(k) possesses a T-invariant open affine neighborhood Vy ⊂ Y such that
there exists a cocharacter μy : Gm → T which contracts Vy onto y, and such that the
set Xμy of fixed-points is finite and consists of k-rational points. Then f −1(y) possesses a
paving by affine spaces defined over the field k.
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Proof The fixed-point y is “attractive” for the Gm-action defined by μy . It is therefore an
(isolated) “repelling” fixed point for the action defined by −μy . Let {xi }i := X−μy = Xμy

be the common finite set of fixed points, which, by our assumptions, are k-rational.
In what follows, the notion of lim

t→0
t · x is made precise by using the language of A1-

monoid actions as in Lemma 6.1.1. We warn the reader that when used in this way, the
symbol t denotes a varying element of Gm , and not the uniformizer in the rings k[[t]], k((t)),
etc.

Consider the Bialynicki-Birula decomposition of X for the action defined by−μy . By our
assumptions, and according to [6, Thm.4.4] and [26, Thm.5.8], we obtain a finite decompo-
sition of X by affine spaces defined over k

X =
∐

i

Xi , Xi :=
{
x ∈ X | lim

t→0
t · x = xi

}
∼= Adi , (7.1)

where t · x = −μy(t)(x) and Xi is the “attracting set” for xi w. r. t. the action defined by
−μy . We claim that if f −1(y) ∩ Xi �= ∅, then Xi ⊆ f −1(y). Let x ∈ Xi , so that

xi = lim
t→0

t · x . (7.2)

If x ∈ f −1(y) ∩ Xi , then xi ∈ f −1(y), for f −1(y) is T-invariant and closed. Let x ∈ Xi be
arbitrary. Applying f to (7.2), we find limt→0 t · f (x) = y. Since y is a repelling fixed-point
for −μy , this forces f (x) = y, so that x ∈ f −1(y).

It follows that the fiber f −1(y) is the union of certain cells in the decomposition (7.1) of
X . ��

We now prove Theorem 2.5.2.(1).
We will apply Lemma 7.1.1 to the morphism p : XB(s•) → XB(s�). The torus T is taken

to be the product T := T × Gm , where T ⊂ G will act as usual and Gm will act through c,
the dilation action discussed in Sect. 6.1.

Since YB(v) ⊂ vUxe, we see that G/B is covered by the open T-invariant subsets vUxe
(v ∈ W̃ ). Further, as in the proof of Lemma 6.1.3, for integers i >>n>> 0we setμ = −2nρ∨
and define μc−i : Gm → T × Gm, a �→ (μ(a), a−i ). Then vμc−i v−1 contracts the open
neighborhood vUxe onto the fixed point vxe = xv .

In particular the only T-fixed points in G/B are the points xw for w ∈ W̃ . Moreover we
claim that the vμc−i v−1-fixed points in G/B are also just the points xw (w ∈ W̃ ). We easily
reduce to the case v = 1. A point in (G/B)(k̄) can be written in the form ū ·w · xe for unique
elements w ∈ W̃ and ū ∈ U ∩ wU (see [17, Lem.3.1] and (3.30)). Clearly ū · w · xe is fixed
by μc−i if and only if ū · w · xe = lim

t→0
t · (ū · w · xe) if and only if ū · w · xe = w · xe.

It follows that each Schubert variety XB(w) and consequently each twisted product
XB(w•) has only finitely many μc−i -fixed points.

From these remarks it follows that any T-fixed point y = xv ∈ XB(s�) has an invariant
neighborhood which is contracted onto y by a cocharacter μy := vμc−i v−1 for which
XB(s•)μy consists of finitely-many k-rational points. Thus all the hypotheses of Lemma
7.1.1 are satisfied for the morphism p : XB(s•) → XB(s�), and we conclude that the fibers
of p over T-fixed points are paved by affine spaces.

Finally we prove the triviality of the map p over B-orbits contained in its image. Assume
YB(v) ⊂ XB(s�). An element B′ ∈ YB(v) can be written in the form

B′ = uvB
for a unique element u ∈ U ∩ vU . We can then define an isomorphism
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p−1(YB(v))
∼−→ p−1(vB) × YB(v)

by sending (B1, . . . ,Br−1, uvB) to ( u−1B1, · · · , u−1Br−1, vB) × uvB.
This completes the proof of Theorem 2.5.2.(1). ��

7.2 Proof of the paving Theorem 2.5.2.(2)

In terms of diagram (6.7), we need to pave by affine spaces the fibers of q ′ ◦ p′ ◦ π . By
B-equivariance, we need consider only the fiber over wP/P for w ≤ u∗ in W/WP . Let
w ∈ W be a minimal element in its coset wWP . Then

q ′−1(wP/P) =
∐

w′∈WP

YB(ww′).

Each YB(ww′) is locally closed in this fiber, and YB(ww′′) ⊂ YB(ww′) if and only if
w′′ ≤ w′. By Theorem 2.5.2(1) applied to p′ ◦ π , we see that each (p′ ◦ π)−1(YB(ww′)) is
paved by affine spaces. Theorem 2.5.2(2) follows. ��
7.3 Proof of Theorem 2.5.2.(3)

We need to prove that the variety XP (w•) is paved by affine spaces. The result can be proved
by induction on r . The case r = 1 is just the statement that XP (w1) is paved by affine spaces,
which is clear. In fact, we even have the B-invariant paving XP (w1) = ∐

v YBP (v) where
v ranges over elements in W/WP such that vWP ≤ w1WP . The fact that YBP (v) is an
affine space is shown in (3.32).

The morphism XP (w•) → XP (w1) in Lemma 4.1.3 is: B-equivariant with fibers iso-
morphic to XP (w2, . . . , wr ); Zariski-locally trivial over the base, and in fact trivial over the
intersection of XP (w1) with any big cell. Each YBP (v) is an affine space, so by induction,
it suffices to prove this morphism is trivial over all of YBP (v). But by (3.32), YBP (v) is
contained in the big cell through xv , and hence we get the desired triviality assertion. ��
7.4 Proof of Corollary 2.2.3 via paving

In light of (4.19), Corollary 2.2.3 is the special case of Theorem 2.2.2 with r ′ = r andm = 1
and P = Q (recall that in this case Q-maximality is automatic). We offer a different proof
based on the paving Theorem 2.5.2.(2) for the fibers of the map φ := p ◦ q ◦π = q ′ ◦ p′ ◦π

arising from diagram (6.7).
By Theorem 2.1.2, the complex ICXP (w•) is a direct summand of q∗π∗Q�XB(s••). For the

same reason, the complex p∗ICXP (w•) is a direct summand of φ∗Q�XB(s••). It follows that
it is enough to show that the latter is good.

By proper base change and Theorem 2.1.1, we see that the paving of the fibers of φ

Theorem 2.5.2.(2) ensures that φ∗Q�XB(s••) is good. ��

8 Remarks on the Kac–Moody setting and results over other fields k

8.1 Remarks on the Kac–Moody setting

As noted in the introduction, if G is a k-split simply connected semisimple group, then G =
LG is a Kac–Moody group over k but if G is only reductive, then LG is not Kac–Moody. We
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remark here that our techniques give results also when G is an arbitrary Kac–Moody group. In
this case, one has a refined Tits system (G, N ,U,U−, T, S) (see [30, Def. 5.2.1, Thm.6.2.8])
and for any parabolic subgroup P ⊂ G, one has the Kac–Moody partial flag ind-variety
G/P , Schubert varieties PwP/P , associated Bruhat decompositions G = ∪w∈PWPPwP
and Bott-Samelson morphisms XP (w•) → G/P , as well as a theory of big cells and a
Birkhoff decomposition (as in [30, Thm.6.2.8]). These objects satisfy the formal properties
listed axiomatically in [30, Chap.5]. This is all described in detail in chapters 5–7 of [30],
when the base field is k = C. Over general base fields, one can invoke the standard references
such as Tits [43,44], Slodowy [40], Matthieu [33,34], and Littelmann [31], to get the same
structures and properties over our finite field k. Granting this, one can deduce formally the
Kac–Moody analogues of our Theorem 2.2.2 andCorollary 2.2.3, using either the contraction
or the affine paving method.

Results in the Kac–Moody setting have been proved earlier by Bezrukavnikov-Yun: in fact
[5, Prop. 3.2.5] seems to be the first place the semisimplicity and Frobenius semisimplicity of
ICw1 ∗ ICw2 was proved, for IC-complexes for B-orbits on full flag varieties of Kac–Moody
groups. Their argument is different from ours. Note that [5] does not imply our full result for
two reasons: 1) LG is not a Kac–Moody group when G is not simply-connected, and 2) we
consider all partial affine flag varieties attached to LG for connected reductive groups G.

Achar-Riche have developed in [1] an abstract framework which implies Frobenius
semisimplicity results in various concrete situations. However, it appears to us that their
method does not prove our Theorem 2.2.2 or Corollary 2.2.3 in general. The main difficulty
seems to be that, in most cases, our convolution morphisms p : XP (w•) → XP (w�) are not
stratified morphisms of affable spaces (in the sense of [1, 9.13]), for any natural choices of
affine even stratifications on the source and target; for more discussion we refer to our earlier
arXiv posting arXiv:1602.00645v2.

8.2 Results over other fields k

The results in Sect. 2.2 concerning generalized convolution morphisms and the surjectivity
criterion Theorem 2.4.1 hold, by the usual specialization arguments over an arbitrary alge-
braically closed field if we replace good with even. Over the complex numbers, they hold if
we replace good with even andTate andwe useM. Saito’s theory of mixedHodgemodules to
state them. At present, we do not see how to establish the surjectivity assertions in Theorems
2.2.2 and 2.4.1 without using weights (Frobenius, or M. Saito’s). The paving results hold
over any field. Theorem 2.1.2 holds over any algebraically closed field and so does Corollary
2.1.3, with the same provisions as above. The construction of L−−Pf and Theorem 2.3.1
hold at least over any perfect field.
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References

1. Achar, P.N., Riche, S.: Koszul duality and semisimplicity of Frobenius. Ann. Inst. Fourier Grenoble. 63,
1511–1612 (2013)

2. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164,
385–419 (1994)

3. Beilinson, A., Bernstein, I.N., Deligne, P.: Faisceaux Pervers, Astérisque 100 (1981)

123

Author's personal copy

http://arxiv.org/abs/1602.00645v2


168 M. A. de Cataldo et al.

4. Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math.
Soc. 9(2), 473–527 (1996)

5. Bezrukavnikov, R., Yun, Z.: On Koszul duality for Kac–Moody groups. Rep. Theory 17, 1–98 (2013)
6. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98(3), 480–497 (1973)
7. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée

radicielle valuée. Inst. Hautes Études Sci. Publ. Math. 60, 197–376 (1984)
8. Conrad, B., Gabber, O., Prasad, G.: Pseudo-reductive groups, new mathematical monographs: 17, Cam-

bridge Univ. Press, Cambridge, pp. 533 +xix (2010)
9. de Cataldo, M.A.: The perverse filtration and the Lefschetz hyperplane theorem, II. J. Algebra Geom.

21(2), 305–345 (2012)
10. de Cataldo,M.A.: Proper toric maps over finite fields. Int. Math. Res. Not. 2015(24), 13106–13121 (2015)
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